Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Optical frequency combs (OFCs) have transformed metrology, optical communications, and high-precision spectroscopic applications. OFC technology has advanced quickly over the last 20 years, placing it at the forefront of optical engineering and laser research. High-quality and stable OFCs are produced using sophisticated modulation techniques that effectively mould the comb spectral properties. Four important modulation strategies for OFC generation are compared in this study: Mach-Zehnder modulation (MZM), frequency modulation (FM), phase modulation (PM), and polarisation modulation (PolM). Two important factors of OFC namely, comb flatness and the number of lines generated are used to assess these modulators performance. The results of experiments and simulations show the benefits and drawbacks of each method and offer guidance on their optimal use in various optical systems. The results of this study provide a detailed understanding of the optimisation of OFC generation, which will aid in the creation of next-generation optical communication and sensor systems. Also, the various applications of OFC are discussed in the last section of this study.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e155903
Opis fizyczny
Bibliogr. 95 poz., rys., wykr., tab.
Twórcy
autor
- Department of Electronics and Communication Engineering, Sri Sairam Engineering College, Chennai, India
autor
- Department of Electronics and Communication Engineering, Sri Sairam Engineering College, Chennai, India
Bibliografia
- [1] Caldwell, E. D., Sinclair, L. C., Newbury, N. R. & Deschenes, J.-D. The time-programmable frequency comb and its use in quantum-limited ranging. Nature 610, 667-673 (2022). https://doi.org/10.1038/s41586-022-05225-8.
- [2] Cruz, F. C. et al. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy. Opt. Express 23, 26814-26824 (2015). https://doi.org/10.1364/OE.23.026814.
- [3] Pasquazi, A. et al. Micro-combs: A novel generation of optical sources. Phys. Rep. 729, 1-81 (2018). https://doi.org/10.1016/j.physrep.2017.08.004.
- [4] Diddams, S. A. The evolving optical frequency comb. J. Opt. Soc. Am. B: Opt. Phys. 27, B51-B62 (2010). https://doi.org/10.1364/JOSAB.27.000B51.
- [5] Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun. 13, 7862 (2022). https://doi.org/10.1038/s41467-022-35446-4.
- [6] Fischer, J. K. et al. Beyond 100g-high-capacity transport technologies for next generation optical core networks. In 2012 Future Network & Mobile Summit (FutureNetw), 1-9 (IEEE, 2012).
- [7] Baskaran, M. & Kishanlal, M. S. M. A novel DWDM-based comb source for future optical network. J. Nonlinear Opt. Phys. Mater. 33, 2350054 (2024). https://doi.org/10.1142/S0218863523500546.
- [8] Sun, D. et al. 10-GHz ultrashort pulse and flat optical comb generation via a semiconductor mode-locked laser. SSRN 1-13 (2025). https://doi.org/10.2139/ssrn.5084520.
- [9] Blind, N., Coarer, E. L., Kern, P. & Gousset, S. Spectrographs for astrophotonics. Opt. Express 25, 27341-27369 (2017). https://doi.org/10.1364/OE.25.027341.
- [10] Endo, M., Sukegawa, T., Silva, A. & Kobayashi, Y. Subgigahertz-resolution table-top spectrograph calibrated with a 4-GHz optical frequency comb. J. Astron. Telesc. Instrum. Syst. 6, 020501 (2020). https://doi.org/10.1117/1.JATIS.6.2.020501.
- [11] Lezius, M. et al. Space-borne frequency comb metrology. Optica 3, 1381-1387 (2016). https://doi.org/10.1364/OPTICA.3.001381.
- [12] Giunta, M. et al. Optical frequency combs for space applications. In 2016 Conference on Lasers and Electro-Optics (CLEO), 1-2 (IEEE, 2016). https://doi.org/10.1364/CLEO_SI.2016.STh4H.5.
- [13] Chen, Z. et al. Tunable optical frequency comb generated using periodic windows in a laser and its application for distance measurement. Sensors 23, 8872 (2023). https://doi.org/10.3390/s23218872.
- [14] Rosado, A. et al. Numerical and experimental analysis of optical frequency comb generation in gain-switched semiconductor lasers. IEEE J. Quantum Electron. 55, 1-12 (2019). https://doi.org/10.1109/JQE.2019.2943482.
- [15] Ye, J. & Cundiff, S. T. Femtosecond optical frequency comb: Principle, operation and applications (Springer Science & Business Media, 2005).
- [16] Sooudi, E. et al. Observation of harmonic-mode-locking in a mode-locked InAs/InP-based quantum-dash laser with CW optical injection. IEEE Photonics Technol. Lett. 23, 549-551 (2011). https://doi.org/10.1109/LPT.2011.2114338.
- [17] Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635-639 (2000). https://doi.org/10.1126/science.288.5466.635.
- [18] Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233-237 (2002). https://doi.org/10.1038/416233a.
- [19] Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264 (2000). https://doi.org/10.1103/PhysRevLett.85.2264.
- [20] Zhang, H. et al. Coherent optical frequency combs: from principles to applications. J. Electron. Sci. Technol. 20, 100157 (2022). https://doi.org/10.1016/j.jnlest.2022.100157.
- [21] Zhai, K., Wang, W., Zhu, S., Wen, H. & Zhu, N. Optical frequency comb generation based on optoelectronic oscillator and Fabry-Perot phase modulator. IEEE Photonics J. 15, 1-5 (2023). https://doi.org/10.1109/JPHOT.2023.3323286.
- [22] Buscaino, B., Zhang, M., Lončar, M. & Kahn, J. M. Design of efficient resonator-enhanced electro-optic frequency comb generators. J. Light. Technol. 38, 1400-1413 (2020). https://doi.org/10.1109/JLT.2020.2973884.
- [23] Parriaux, A., Hammani, K. & Millot, G. Electro-optic frequency combs. Adv. Opt. Photonics 12, 223-287 (2020). https://doi.org/10.1364/AOP.382052.
- [24] Qu, K. et al. Ultra-flat and broadband optical frequency comb generator via a single Mach–Zehnder modulator. IEEE Photonics Technol. Lett. 29, 255-258 (2016). https://doi.org/10.1109/LPT.2016.2640276.
- [25] Rosado, A. et al. Experimental study of optical frequency comb generation in gain-switched semiconductor lasers. Opt. Laser Technol. 108, 542-550 (2018). https://doi.org/10.1016/J.OPTLASTEC.2018.07.038.
- [26] Fan, Y. & Shore, K. A. Generation of optical frequency combs using gain switched semiconductor nanolasers. IEEE Photonics Technol. Lett. 35, 713-716 (2023). https://doi.org/10.1109/LPT.2023.3274164.
- [27] Imai, K., Kourogi, M. & Ohtsu, M. 30-THz span optical frequency comb generation by self-phase modulation in an optical fiber. IEEE J. Quantum Electron. 34, 54-60 (1998). https://doi.org/10.1109/3.655007.
- [28] Bassiouni, M., Ismail, T., Selmy, H. & Badr, Y. Generation of ofc by self-phase modulation and multiple laser sources in HNLF. In 2020 16th International Computer Engineering Conference (ICENCO), 203-206 (IEEE, 2020). https://doi.org/10.1109/ICENCO49778.2020.9357325.
- [29] Weng, H.-Z. et al. Optical frequency comb generation in highly nonlinear fiber with dual-mode square microlasers. IEEE Photonics J. 10, 7102009 (2017). https://doi.org/10.1109/JPHOT.2017.2780280.
- [30] Ho, K.-P. & Kahn, J. M. Optical frequency comb generator using phase modulation in amplified circulating loop. IEEE Photonics Technol. Lett. 5, 721-725 (1993). https://doi.org/10.1109/68.219723.
- [31] Ullah, S. et al. Ultra-wide and flattened optical frequency comb generation based on cascaded phase modulator and LiNbO3-MZM offering terahertz bandwidth. IEEE Access 8, 76692-76699 (2020). https://doi.org/10.1109/ACCESS.2020.2989678.
- [32] Verma, P. & Singh, S. Exploiting cross-polarization modulation in semiconductor optical amplifier-Mach-Zehnder interferometer for enhanced optical frequency comb generation. Opt. Eng. 63 (2024). https://doi.org/10.1117/1.oe.63.11.115101.
- [33] Yang, T., Dong, J., Liao, S., Huang, D. & Zhang, X. Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers. Opt. Express 21, 8508-8520 (2013). https://doi.org/10.1364/OE.21.008508.
- [34] Khalil, M., Sun, H., Papatheodorakos, T., Adams, R. & Chen, L. R. Optical frequency comb generation using integrated cascaded mzms on soi. In 2024 Photonics North (PN), 1-2 (2024).
- [35] Zhang, S. et al. Generation of a flat optical frequency comb via a cascaded dual-parallelMach-Zehnder modulator and phase modulator without using the fundamental tone. Photonics 10, 1340 (2023). https://doi.org/10.3390/photonics10121340.
- [36] Qu, K., Zhao, S., Li, X., Tan, Q. & Zhu, Z. Ultraflat and broadband optical frequency comb generator based on cascaded two dual-electrode Mach-Zehnder modulators. Opt. Rev. 25, 264-270 (2018). https://doi.org/10.1007/s10043-018-0417-4.
- [37] Sakamoto, T., Kawanishi, T. & Izutsu, M. Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator. Electron. Lett. 43, 1 (2007). https://doi.org/10.1049/el:20071267.
- [38] Sun, H., Khalil, M., Wang, Z. & Chen, L. R. Recent progress in integrated electro-optic frequency comb generation. J. Semicond. 42, 041301 (2021). https://doi.org/10.1088/1674-4926/42/4/041301.
- [39] Nazneen, R. & Zahir, E. Analysis and optimization of an optical frequency comb for multiple channel transmission in a fiberoptic system. In 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), 1-4 (2016). https://doi.org/10.1109/CEEICT.2016.7873132.
- [40] Shang, L., Wen, A. & Lin, G. Optical frequency comb generation using two cascaded intensity modulators. J. Opt. 16, 035401 (2014). https://doi.org/10.1088/2040-8978/16/3/035401.
- [41] Deng, Z. et al. Ultra-precise optical phase-locking approach for ultralow noise frequency comb generation. Opt. Laser Technol. 138, 106906 (2021). https://doi.org/10.1016/j.optlastec.2020.106906.
- [42] Hraghi, A., Chaibi, M. E., Menif, M. & Erasme, D. Demonstration of 16QAM-OFDM UDWDM transmission using a tunable optical flat comb source. J. Light. Technol. 35, 238-245 (2017). https://doi.org/10.1109/JLT.2016.2636442.
- [43] Sakamoto, T. & Chiba, A. Multiple-frequency-spaced flat optical comb generation using a multiple-parallel phase modulator. Opt. Lett. 42, 4462-4465 (2017). https://doi.org/10.1364/OL.42.004462.
- [44] Li, W., Wang, W. T., Sun, W. H., Wang, L. X. & Zhu, N. H. Photonic generation of arbitrarily phase-modulated microwave signals based on a single DDMZM. Opt. Express 22, 7446-7457 (2014). https://doi.org/10.1364/OE.22.007446.
- [45] Sakamoto, T., Kawanishi, T. & Tsuchiya, M. 10 GHz, 2.4 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator. Opt. Lett. 33, 890-892 (2008). https://doi.org/10.1364/OL.33.000890.
- [46] Sakamoto, T., Kawanishi, T. & Izutsu, M. Optimization of electro-optic comb generation using conventional Mach-Zehnder modulator. In 2007 Interntional Topical Meeting on Microwave Photonics, 50-53 (IEEE, 2007). https://doi.org/10.1109/MWP.2007.4378133.
- [47] Zhou, X., Zheng, X., Wen, H., Zhang, H. & Zhou, B. Generation of broadband optical frequency comb with rectangular envelope using cascaded intensity and dual-parallel modulators. Opt. Commun. 313, 356-359 (2014). https://doi.org/10.1016/j.optcom.2013.10.054.
- [48] Wu, R., Supradeepa, V., Long, C. M., Leaird, D. E. & Weiner, A. M. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35, 3234-3236 (2010). https://doi.org/10.1364/OL.35.003234.
- [49] Malinowski, M., Rao, A., Delfyett, P. & Fathpour, S. Optical frequency comb generation by pulsed pumping. APL Photonics 2, 066101 (2017). https://doi.org/10.1063/1.4983113.
- [50] Huancachoque, L. A., dos Santos, M. L., Pereira, A. I., Nascimento, D. V. & Bordonalli, A. C. Optical frequency comb generation by dual drive Mach-Zehnder modulator with algorithm-assisted efficient amplitude equalization. In 2019 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 1-3 (IEEE, 2019). https://doi.org/10.1109/IMOC43827.2019.9317691.
- [51] Jeyapiriya, K. & Baskaran, M. Generation of 103 ultra-flat broadband optical frequency comb lines using cascaded amplitude modulator and single drive Mach-Zehnder modulators. J. Optoelectron. Adv. Mater. 26, 368-375 (2024). https://joam.inoe.ro/articles/generation-of-103-.../.
- [52] Dou, Y., Zhang, H. & Yao, M. Generation of flat optical-frequency comb using cascaded intensity and phase modulators. IEEE Photonics Technol. Lett. 24, 727-729 (2012). https://doi.org/10.1109/LPT.2012.2187330.
- [53] Zhang, J. et al. Flattened comb generation using only phase modulators driven by fundamental frequency sinusoidal sources with small frequency offset. Opt. Lett. 38, 552-554 (2013). https://doi.org/10.1364/OL.38.000552.
- [54] Zhang, Y., Zhang, H. & Shu, C. Generation of optical frequency comb via cross-phase modulation in an SOI waveguide. In 2022 Optical Fiber Communications Conference and Exhibition (OFC), 1-3 (2022). https://doi.org/10.1364/OFC.2022.Tu3E.4.
- [55] Yan, J., Dong, H. & Wang, Y. Line-spacing-multiplied optical frequency comb generation using an electro-optic talbot laser and cross-phase modulation in a fiber. Photonics 11, 282 (2024). https://doi.org/10.3390/photonics11030282.
- [56] Supradeepa, V. R. & Weiner, A. M. Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing. Opt. Lett. 37, 3066-3068 (2012). https://doi.org/10.1364/OL.37.003066.
- [57] Wang, M. & Yao, J. Tunable optical frequency comb generation based on an optoelectronic oscillator. IEEE Photonics Technol. Lett. 25, 2035-2038 (2013). https://doi.org/10.1109/LPT.2013.2280666.
- [58] Mohammadi, A. et al. High-repetition-rate electro-optic frequency combs using cascaded silicon phase modulators. Opt. Express 33, 23820-23834 (2025). https://doi.org/10.1364/OE.558298.
- [59] Ujjwal & Kumar, R. Optical frequency comb generator employing two cascaded frequency modulators and Mach-Zehnder modulator. Electronics 12, 2762 (2023). https://doi.org/10.3390/electronics12132762.
- [60] Cui, Y. et al. Flat optical frequency comb generation by using one DPMZM and superposed harmonics. Opt. Commun. 531, 129223 (2023). https://doi.10.1016/j.optcom.2022.129223.
- [61] Lv, X. & Li, D. High-quality optical frequency comb generation-based on polarization modulator with RF frequency multiplication circuit and intensity modulator. J. Opt. Commun. 43, 347-352 (2022). https://doi.org/10.1515/joc-2019-0003.
- [62] Ricciardi, I. et al. Frequency comb generation in quadratic nonlinear media. Phys. Rev. A 91, 063839 (2015). https://doi.org/10.1103/PhysRevA.91.063839.
- [63] Ataie, V., Myslivets, E., Kuo, B. P.-P., Alic, N. & Radic, S. Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping. J. Light. Technol. 32, 840-846 (2014). https://doi.org/10.1109/JLT.2013.2287852.
- [64] Cui, Y., Li, R. & Wu, S. Flat optical frequency comb generation using polarization modulator and frequency shifter with double recirculating frequency shifting loops. Opt. Quantum Electron. 49, 338 (2017). https://doi.org/10.1007/S11082-017-1179-0.
- [65] Kageyama, T. & Hasegawa, T. Fast polarization control for optical frequency combs. Opt. Express 29, 38477-38487 (2021). https://doi.org/10.1364/OE.439346.
- [66] Verma, P. & Singh, S. An approach to generate cross-polarization modulation-enabled optical frequency comb with enhanced spectral flatness in traveling-wave semiconductor optical amplifiers. J. Opt. 26, 105703 (2024). https://doi.org/10.1088/2040-8986/ad6f24.
- [67] Li, R., Wu, S., Ye, S. & Cui, Y. Very flat optical frequency comb generation based on polarization modulator and recirculation frequency shifter. J. Opt. Commun. 39, 7-12 (2017). https://doi.org/10.1515/joc-2016-0108.
- [68] Li, D., Wu, S., Liu, Y. & Guo, Y. Flat optical frequency comb generation based on a dual-parallel Mach–Zehnder modulator and a single recirculation frequency shift loop. Appl. Opt. 59, 1916-1923 (2020). https://doi.org/10.1364/AO.381880.
- [69] Shang, L., Li, Y. & Wu, F. Optical frequency comb generation using a polarization division multiplexing Mach–Zehnder modulator. J. Opt. 48, 60-64 (2019). https://doi.org/10.1007/S12596-019-00516-2.
- [70] Wang, X., Wei, Y., Gong, C., Liu, S. & Fan, D. Optical frequency comb generation based on DPMZM cascades FM, EAM and PolM. In 2021 IEEE 6th Optoelectronics Global Conference (OGC), 56-60 (IEEE, 2021). https://doi.org/10.1109/OGC52961.2021.9654330.
- [71] Lin, T. et al. Polarization-dependent high quality optical frequency comb generator based on recirculating frequency shift. In 2018 Asia Communications and Photonics Conference (ACP), 1-3 (Optica Publishing Group, 2018). https://doi.org/10.1109/ACP.2018.8596266.
- [72] Guo, Y., Liu, Y., Li, D. & Wu, S. Ultra-flat optical frequency comb generation based on a polarization modulator and a butterworth band-stop filter. Appl. Opt. 60, 5540-5546 (2021). https://doi.org/10.1364/AO.424836.
- [73] Doumbia, Y., Wolfersberger, D., Panajotov, K. & Sciamanna, M. Tailoring frequency combs through vcsel polarization dynamics. Opt. Express 29, 33976-33991 (2021). https://doi.org/10.1364/OE.432281.
- [74] Xu, M. & Cai, X. Advances in integrated ultra-wideband electro-optic modulators. Opt. Express 30, 7253-7274 (2022). https://doi.org/10.1364/OE.449022.
- [75] Paul, P. S., Sadia, M., Hossain, R., Muldrey, B. J. & Hasan, S. Design of a low-overhead random number generator using CMOS-based cascaded chaotic maps. In Proc. Great Lakes Symposium on VLSI, 109-114 (ACM, 2021). https://doi.org/10.1145/3453688.3461504.
- [76] Wang, Z. et al. Optical frequency comb generation using CMOS compatible cascaded Mach-Zehnder modulators. IEEE J. Quantum Electron. 55, 1-6 (2019). https://doi.org/10.1109/JQE.2019.2948152.
- [77] Wang, Z. et al. On-chip frequency comb generation using cascaded MZMs in SiP for microwave photonics applications. In 2019 International Topical Meeting on Microwave Photonics (MWP), 1-3 (IEEE, 2019). https://doi.org/10.1109/MWP.2019.8892022.
- [78] Lin, J., Sepehrian, H., Xu, Y.-L., Rusch, L. A. & Shi, W. Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks. IEEE Photonics Technol. Lett. 30, 1495-1498 (2018). https://doi.org/10.1109/LPT.2018.2856767.
- [79] Sharma, V. & Singh, S. Progress in optical frequency comb generation techniques towards flexible optical communication network. J. Opt. 27, 043001 (2025). https://doi.org/10.1088/2040-8986/adb1f2.
- [80] Dhakad, B. et al. Design and analysis of 16 channel WDM-OFC system with minimum ber for 5G applications. In Third International Conference on Communication, Networks and Computing CNC 2022, 28-39 (Springer, 2023). https://doi.org/10.1007/978-3-031-43140-1_4.
- [81] Yan, X., Zou, X., Pan, W., Yan, L. & Azaña, J. Fully digital programmable optical frequency comb generation and application. Opt. Lett. 43, 283-286 (2018). https://doi.org/10.1364/OL.43.000283.
- [82] Arya, V., Kumari, M., Chauhan, R. & Sharma, N. Secure optical wireless satellite network based OWC-OCDM system with DDW code. In 2023 4th IEEE Global Conference for Advancement in Technology (GCAT), 1-5 (IEEE, 2023). https://doi.org/10.1109/gcat59970.2023.10353493.
- [83] Chan, V. Optical satellite network architecture. J. Opt. Commun. Netw. 16, A53-A67 (2023). https://doi.org/10.1364/jocn.499822.
- [84] Pan, R., Lin, G., Shi, Z., Zeng, Y. & Yang, X. The application of disturbance-observer-based control in breath pressure control of aviation electronic oxygen regulator. Energies 14, 5189 (2021). https://doi.org/10.3390/EN14165189.
- [85] Rehman, M. et al. RF sensing based breathing patterns detection leveraging USRP devices. Sensors 21, 3855 (2021). https:/doi.org/10.3390/S21113855.
- [86] Khabbaz, A., Lampin, J.-F., Hindle, F. & Mouret, G. Molecular spectroscopy with a THz frequency comb. In 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2 (IEEE, 2024). https:/doi.org/10.1109/irmmw-thz60956.2024.10697872.
- [87] Sterczewski, L. A., Bagheri, M. & Benmerabet, N. Cavity-enhanced Vernier spectroscopy with a chip-scale mid-infrared frequency comb. ACS Photonics 9, 994-1001 (2022). https://doi.org/10.1021/acsphotonics.1c01849.
- [88] Thorpe, M. J., Balslev-Clausen, D., Kirchner, M. S. & Ye, J. Human breath analysis via cavity-enhanced optical frequency comb spectroscopy. Opt. Express 16, 2387 (2007). https://doi.org/10.1364/OE.16.002387.
- [89] Jerez, B., Martín-Mateos, P., Prior, E., de Dios, C. & Acedo, P. Dual optical frequency comb architecture with capabilities from visible to mid-infrared. Opt. Express 24, 14986-14994 (2016). https://doi/10.1364/OE.24.014986.
- [90] Cundiff, S. T. & Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325 (2003). https://doi.org/10.1103/RevModPhys.75.325.
- [91] Long, D. A. et al. Nanosecond time-resolved dual-comb absorption spectroscopy. Nat. Photonics 1-5 (2023). https://doi.org/10.1038/s41566-023-01316-8.
- [92] Hu, H. & Oxenløwe, L. K. Chip-based optical frequency combs for high-capacity optical communications. Nanophotonics 10, 1367-1385 (2021). https://doi.org/10.1515/nanoph-2020-0561.
- [93] Lu, H.-H., Weiner, A. M., Lougovski, P. & Lukens, J. M. Quantum information processing with frequency-comb qudits. IEEE Photonics Technol. Lett. 31, 1858-1861 (2019). https://doi.org/10.1109/LPT.2019.2942136.
- [94] Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photonics 16, 95-108 (2022). https://doi.org/10.1038/s41566-021-00945-1.
- [95] Tian, H. et al. Broadband, high-power optical frequency combs covering visible to near-infrared spectral range. Opt. Lett. 49, 538--541 (2024). https://doi.org/10.1364/OL.514182.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-061108ca-026a-4b51-ac89-24ef46bc4d80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.