PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical Model of an Electric Arc in Differential and Integral Forms With the Plasma Column Radius as a State Variable

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Model matematyczny łuku elektrycznego w postaciach różniczkowej i całkowej z promieniem kolumny plazmowej jako zmienną stanu
Języki publikacji
EN PL
Abstrakty
EN
The preliminary assumptions necessary to create a known mathematical model of an electric arc with a radius as a state variable are described. Besides the differential form, the integral form of this model is also presented. A hybrid model of an arc in the differential and integral forms has also been created. Weighting functions depending either on the current or on the resultant conductance were used. The presented mathematical models' performance in mapping the voltage-current characteristics of an electric arc in various current change ranges was examined in simulation.
PL
Opisano założenia wstępne niezbędne do utworzenia znanego modelu matematycznego łuku elektrycznego o promieniu jako zmiennej stanu. Oprócz postaci różniczkowej zaprezentowano także postać całkową tego modelu. Utworzono także model hybrydowy łuku w postaciach różniczkowej i całkowej. Zastosowano funkcje wagowe zależne albo od natężenia prądu, albo od wypadkowej konduktancji. W sposób symulacyjny zbadano efektywność stosowania zaprezentowanych modeli matematycznych do odwzorowania charakterystyk napięciowo-prądowych łuku elektrycznego w różnych zakresach zmian wartości prądu.
Wydawca
Czasopismo
Rocznik
Tom
Strony
57--64
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Association of Polish Electrical Engineers, Częstochowa Branch
Bibliografia
  • 1. Pentegov I.V., Sydorets V.N., Comparative analysis of models of dynamic welding arc, The Paton Welding Journal, No. 12, 2015, pp. 45–48.
  • 2. Lin D., Ron Hui S.Y., Chua L.O., Gas discharge lamps are volatile memristors, IEEE Transactions on Circuits and Systems–I: Regular Papers, Vol. 61, No. 7, 2014, pp. 2066–2073.
  • 3. Shvartsas M., Ben-Yaakov S., A SPICE compatible model of high intensity discharge lamps, 30th Annual IEEE Power Electronics Specialists Conference, Record. (Cat. No.99CH36321), pp. 1037–1042. (DOI:10.1109/PESC.1999.785639).
  • 4. Sawicki A., Classic and Modified Mathematical models of an Electric Arc, Biuletyn Instytutu Spawalnictwa, No. 4, 2019, pp. 67-73. (DOI: 10.17729/ebis.2019.4/7).
  • 5. Sawicki A., Haltof M., Spectral and integral methods of determining parameters in selected electric arc models with a forced sinusoid current circuit, Archives of Electrical Engineering, Vol. 65, No. 1, 2016, pp. 87–103. (DOI: 10.1515/aee-2016-0007).
  • 6. Janowski T., Jaroszyński L., Stryczewska H.D., Modification of the Mayr’s electric arc model for gliding arc analysis, XXVI International Conference on Phenomena in Ionized Gases, Nagoya, Japan 2001/7/17, pp. 341–342 (2001).
  • 7. Awagan G.R., Thosar A.G., Mathematical Modeling of Electric Arc Furnace to Study the Flicker, International Journal of Scientific & Engineering Research, Vol. 7, Issue 5, 2016, pp. 684–695.
  • 8. Grabowski D., Walczak J., Klimas M., Electric arc furnace power quality analysis based on a stochastic arc model, Conference: 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (DOI: 10.1109/EEEIC.2018.8494547).
  • 9. Grabowski D., Walczak J., Deterministic model of electric arc furnace – a closed form solution, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 32, No. 4, 2013, pp. 1428–1436.
  • 10. Grabowski D., Walczak J., Analysis of deterministic model of electric arc furnace. 10th International Conference on Environment and Electrical Engineering, Rome, Italy, 8–11 May 2011 (DOI: 10.1109/EEEIC.2011.5874805).
  • 11. Grabowski D., Selected applications of stochastic approach in circuit theory. Monograph, WPŚl, Gliwice 2015.
  • 12. Phillips R.L., Theory of the non-stationary arc column, British Journal of Applied Physics, Vol. 18, No. 1, 2002, pp. 65–78.
  • 13. King-Jet Tseng, Yaoming Wang D., Mahinda Vilathgamuwa, An experimentally verified hybrid Cassie-Mayr electric arc model for power electronics simulations, IEEE Transactions on Power Electronics, Vol. 12, No. 3, 1997, pp. 429–436.
  • 14. Sawicki A., Funkcje wagowe w modelach hybrydowych łuku elektrycznego [Weighting functions in hybrid models of electric arc], Śląskie Wiadomości Elektryczne, No. 5 (104), 2012, pp. 15–19.
  • 15. Acha E., Semlyen A., Rajakovic N., A harmonic domain computational package for nonlinear problems and its application to electric arcs, IEEE Transactions on Power Delivery, Vol. 5, Issue: 3, 1990, pp. 1390–1397 (DOI: 10.1109/61.57981).
  • 16. Kopersak V.M., The theory of welding processes-1, KPI, Kiev (2011). [in Ukrainian].
  • 17. Kalasek V., Measurements of time constants on cascade d.c. arc in nitrogen, TH-Report 71-E18, Eindhoven, 1971, pp. 1–30.
  • 18. Voronin A.A., Improving the efficiency of contact-extinguishing systems of high-current switching devices with an extending arc, Abstract of thesis, Samara (2009) [in Russian].
  • 19. Katsaounis A., Heat flow and arc efficiency at high pressures in argon and helium tungsten arcs, Welding Research Supplement I, September 1993, pp. 447–454.
  • 20. Sawicki A., Improvements of Hybrid Models of the Electric Arc of Variable Geometrical Parameters, 2018 Conference on Electrotechnology: Processes, Models, Control and Computer Science (EPMCCS) (IEEE Xplore Digital Library, DOI: 10.1109/EPMCCS.2018.8596459).
  • 21. Marciniak L., Implementacje modeli łuku ziemnozwarciowego w programach PSCAD i Matlab/Simulink [Implementation of arc earth-fault models in PSCAD and Matlab/Simulink], Przegląd Elektrotechniczny, No. 9a, 2012, pp. 126–129.
  • 22. Marciniak L., Model of the arc earth-fault for medium voltage networks, Central European Journal of Engineering, No. 1(2), pp. 168–173 (DOI: 10.2478/s13531-011-0020-y).
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
2. Wersja polska na stronach 65-72.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0610c6a7-8721-4ff6-af4a-d5a75259c4bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.