PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rapid NEGF-based calculation of ballistic current in ultra-short DG MOSFETs for circuit simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shrinking gate length in conventional MOSFETs leads to increasing short channel effects like source-to-drain (SD) tunneling. Compact modeling designers are challenged to model these quantum mechanical effects. The complexity lies in the set-up between time efficiency, physical model relation and analytical equations. Multi-scale simulation bridges the gap between compact models, its fast and efficient calculation of the device terminal voltages, and numerical device models which consider the effects of nanoscale devices. These numerical models iterate between Poisson- and Schroedinger equation which significantly slows down the simulation performance. The physicsbased consideration of quantum effects like the SD tunneling makes the non-equilibrium Green’s function (NEGF) to a stateof-the-art method for the simulation of devices in the sub 10 nm region. This work introduces a semi-analytical NEGF model for ultra-short DG MOSFETs. Applying the closed-form potential solution of a classical compact model, the model turns the NEGF from an iterative numerical solution into a straightforward calculation. The applied mathematical approximations speed up the calculation time of the 1D NEGF. The model results for the ballistic channel current in DG-MOSFETs are compared with numerical NanoMOS TCAD [1] simulation data. Shown is the accurate potential calculation as well as the good agreement of the current characteristic for temperatures down to 75 K for channel lengths from 6 nm to 20 nm and channel thickness from 1.5 nm to 3 nm.
Twórcy
autor
  • University Rovira i Virgili, Tarragona
  • Research Group Nanoelectronics / Device Modeling at the Competence Center for Nanotechnology and Photonics, Technische Hochschule Mittelhessen, Giessen, German
autor
  • University Rovira i Virgili, Tarragona
  • Research Group Nanoelectronics / Device Modeling at the Competence Center for Nanotechnology and Photonics, Technische Hochschule Mittelhessen, Giessen, German
autor
  • University Rovira i Virgili, Tarragona
  • Research Group Nanoelectronics / Device Modeling at the Competence Center for Nanotechnology and Photonics, Technische Hochschule Mittelhessen, Giessen, German
  • University Rovira i Virgili, Tarragona
  • Technische Hochschule Mittelhessen, Giessen, Germany
autor
  • Technische Hochschule Mittelhessen, Giessen, Germany
autor
  • University Rovira i Virgili, Tarragona
autor
  • University Rovira i Virgili, Tarragona
Bibliografia
  • [1] Z. Ren, S. Goasguen, A. Matsudaira, S. S. Ahmed, K. Cantley, Y. Liu, Y. Gao, X. Wang, and M. Lundstrom, “NanoMOS.” https://nanohub.org/resources/1305, Mar 2016.
  • [2] J. Wang and M. Lundstrom, “Does Source-to-Drain Tunneling Limit the Ultimate Scaling of MOSFETs?.” in International Electron Devices Meeting IEDM, pp. 707–710, Dec. 2002.
  • [3] Q. Rafhay, R. Clerc, G. Ghibaudo, and G. Pananakakis, “Impact of Source-to-Drain Tunnelling on the Scalability of Arbitrary Oriented Alternative Channel Material nMOSFETs.” Solid-State Electronics, vol. 52, no. 10, pp. 1474 – 1481, 2008.
  • [4] J. Watling, A. Brown, A. Asenov, A. Svizhenko, and M. Anantram, “Simulation of Direct Source-to-Drain Tunnelling Using the Density Gradient Formalism: Non-Equilibrium Greens Function Calibration.” in International Conference on Simulation of Semiconductor Processes and Devices SISPAD, pp. 267–270, 2002.
  • [5] S. Datta, “Nanoscale Device Modeling: the Green’s Function Method.” Superlattices and Microstructures, vol. 28, no. 4, pp. 253 – 278, 2000.
  • [6] G. Fiori and G. Iannaccone, “NanoTCAD ViDES.” https://nanohub.org/resources/5116, Sep 2014.
  • [7] O. Baumgartner and Z. S. et al., VSP-a Quantum-Electronic Simulation Framework, pp. 701–721. Springer Science+Business Media, 2013.
  • [8] M. P. Anantram, S. S. Ahmed, A. Svizhenko, D. Kearney, and G. Klimeck, “NanoFET.” https://nanohub.org/resources/1090, Mar 2016.
  • [9] F. Hosenfeld, M. Graef, F. Horst, A. Kloes, B. Iniguez, and F. Lime, “Modeling Approach for Rapid NEGF-Based Simulation of Ballistic Current in Ultra-Short DG MOSFETs.” in Mixed Design of Integrated Circuits and Systems MIXDES - 23rd International Conference, pp. 52– 57, June 2016.
  • [10] M. Graef, T. Holtij, F. Hain, A. Kloes, and B. Iniguez, “Improved Analytical Potential Modeling in Double-Gate Tunnel-FETs.” in Mixed Design of Integrated Circuits Systems (MIXDES), pp. 49–53, June 2014.
  • [11] A. Kloes, M. Schwarz, T. Holtij, and A. Navas, “Quantum Confinement and Volume Inversion in MOS3 Model for Short-Channel Tri-Gate MOSFETs.” IEEE Transactions on Electron Devices, vol. 60, pp. 2691– 2694, Aug 2013.
  • [12] M. Schwarz, T. Holtij, A. Kloes, and B. Iniguez, “Analytical Compact Modeling Framework for the 2D Electrostatics in Lightly Doped DoubleGate MOSFETs.” Solid-State Electronics, vol. 69, pp. 72 – 84, 2012.
  • [13] E. Weber, Electromagnetic Fields, Vol.I., Mapping of Fields. John Wiley, New York, 1950.
  • [14] J. Wang, A. Rahman, A. Ghosh, G. Klimeck, and M. Lundstrom, “On the Validity of the Parabolic Effective-Mass Approximation for the IV Calculation of Silicon Nanowire Transistors.” IEEE Transactions on Electron Devices, vol. 52, pp. 1589–1595, July 2005.
  • [15] D. Selim, S. Gamal, W. Fikry, and O. A.-E. Halim, “Rapid and Efficient Method for Numerical Quantum Mechanical Simulation of Gate-All-Around Nanowire Transistors.” in International Conference on Microelectronics, pp. 229–232, May 2012.
  • [16] S. Datta, “MATLAB codes from: Nanoscale device modeling: the Green’s function method.” https://nanohub.org/resources/19564, Oct 2013.
  • [17] E. N. Economou, Green’s Functions in Quantum Physics. Springer Science+BusinessMedia, 2006.
  • [18] S. Datta, Quantum Transport: Atom to Transistor. Cambridge, 2005.
  • [19] S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge University Press, 1997.
  • [20] R. Kim and M. Lundstrom, “Notes on Fermi-Dirac Integrals (3rd Edition).” Sep 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-060f2f28-307c-440d-9418-a482cc92d373
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.