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Abstract—Shrinking gate length in conventional MOSFETs
leads to increasing short channel effects like source-to-drain
(SD) tunneling. Compact modeling designers are challenged to
model these quantum mechanical effects. The complexity lies
in the set-up between time efficiency, physical model relation
and analytical equations. Multi-scale simulation bridges the gap
between compact models, its fast and efficient calculation of the
device terminal voltages, and numerical device models which
consider the effects of nanoscale devices. These numerical models
iterate between Poisson- and Schroedinger equation which sig-
nificantly slows down the simulation performance. The physics-
based consideration of quantum effects like the SD tunneling
makes the non-equilibrium Green’s function (NEGF) to a state-
of-the-art method for the simulation of devices in the sub 10 nm
region.

This work introduces a semi-analytical NEGF model for
ultra-short DG MOSFETs. Applying the closed-form potential
solution of a classical compact model, the model turns the
NEGF from an iterative numerical solution into a straightforward
calculation. The applied mathematical approximations speed up
the calculation time of the 1D NEGF. The model results for the
ballistic channel current in DG-MOSFETs are compared with
numerical NanoMOS TCAD [1] simulation data. Shown is the
accurate potential calculation as well as the good agreement of
the current characteristic for temperatures down to 75 K for
channel lengths from 6 nm to 20 nm and channel thickness from
1.5 nm to 3 nm.

Index Terms—Ultra-Short Double-Gate (DG) MOSFET, Non
Equilibrium Green’s Function (NEGF), Ballistic Transport,
Source-to-Drain (SD) Tunneling, Ultra-Thin Body (UTB), Com-
pact Model, Multiscale Simulation.

I. INTRODUCTION

NOWADAYS, the MOSFET is the most technologically

advanced device of the transistor variety. During its scal-

ing process, the investigated channel length gets down below

10 nm. Due to the source-to-drain (SD) tunneling effects, this

characteristic length is physically limited (see Fig.1) [2], [3],

[4]. Overcoming this geometry milestone of 10 nm is always

resulting in a significant increase of the device’s OFF-current,

hence reducing the on/off ratio and a degradation of the

subthreshold slope (S). Based on the non-equilibrium Green’s

function (NEGF) formalism introduced by Keldysh, Kadanoff

and Baym, the quantum mechanical and SD tunneling effects

are inherently considered [2], [3], [4], [5]. Therefore, the

formalism has become one of the most promising current

calculation methods for TCAD simulations [1], [6], [7], [8].

In order to transfer these mathematics from numerical device

simulations to numerically efficient compact transistor models

for circuit simulation, a reduction from many numeric steps

to a few calculations is necessary (see Fig. 2).

This work is based on the DG MOSFET shown in Figure 3.

Its source and drain regions are highly n-doped and the channel

stays intrinsic, whereby an ideal doping profile is assumed. For

an increased influence on the channel region, the gate dielectric

consists of a high-κ oxide material with the dielectric constant

εox = 25 · ε0. For a channel thickness down to tch = 1.5 nm
and a channel length down to lch = 6nm a fully ballistic

current transport in the channel is assumed.

First results have been presented in [9], in this paper the

approach is more detailed and less fitting parameters are used.
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Figure 1. Thermionic current and SD tunneling current of a short channel
transistor [3].
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Figure 2. Flowchart of a) standard compact models using analytical
solved equations, b) common numerical NEGF models which iterate between
transport and Poisson solver c) new semi-analytic NEGF model without
iterations.

II. NON-ITERATIVE NEGF CURRENT MODEL

Following, the derivation of the semi-analytical DG MOS-

FET model is introduced. State-of-the-art compact models (see



Figure 3. Geometry of a DG MOSFET showing the doping profiles, structural
parameters and the 1D current density at specific y-positions: Js at the surface
and Jc at the center.

Fig. 2(a)) use classical transport equations. These transport

equations are only able to calculate the tunneling current by

introducing approximations or using empirical equations. On

the other hand, the NEGF calculates the thermionic emission

current and the tunneling current based on physical equations.

Coupling the NEGF with Poisson’s equation leads to self-

consistent results but increase the simulation time (see Fig.

2(b)). For the semi-analytical model, the time consuming

iterative coupling of Poisson’s equation with the NEGF solver

is omitted. As depicted in Fig. 2(c), the approach consists

of three main parts which distinguish this model from other

models. In the first part of the semi-analytical model, the

accurate calculation of the device potential is done. In a first

step, the focus is on the subthreshold region of the device.

Therefore, the mobile charges can be neglected in the solution

of Poisson’s equation. The effect of mobile charges on the

device electrostatics need to be incorporated in a further step.

Based on the accurate potential calculation the conduction

band structure is calculated for certain geometry- and material

variations. The band structure together with the effective

mass Hamiltonian are important input parameters to formulate

the Green’s function. Together with the Fermi level of each

contact, the electron density and hence the current density for

a specific energy level is calculated.

The fast and efficient drain current calculation is done

by an interpolation between some specific and significant

energy levels. The accuracy of this not self-consistent model is

validated by comparing with self-consistent numerical device

simulations in section IV.

A. Electrostatics

The closed-form potential solution is based on an analyt-

ical model for Double-Gate Tunnel-FETs published in [10].

Aiming for a precise potential of the device, the Poisson

equation needs to be solved. Because solving the Laplace

equation is much more convenient for compact models and

almost accurate in subthreshold region, the mobile charges are

neglected in a first step:

ΔΦ2D = −ρ

ε
→ ΔΦ2D ≈ 0. (1)

Mobile Charges
So far, the Laplace solution is only accurate in the subthreshold

region. In order to take respect to the mobile charges, these

charges are estimated in a closed-form approach obtained from

[11]. The inversion charge is Q
′
i,s calculated by:

Q
′
i,s = 2αC

′
oxVth × L

{ Q
′
i,0

2αC ′
oxVth

×

exp
(2C ′

ox(Vgs − V0) +Q
′
i,0

2αC ′
oxVth

)}
.

(2)

Here, Q
′
i,0 is the mobile electron charge at an arbitrary gate

bias Vgs = V0, which in this model is set to the flatband

voltage, V0 = Vfb:

Q
′
i,0 = q · ni · tch. (3)

Vth is the thermal voltage, C
′
ox the capacitance per gate

area, and L is the first branch of Lambert’s W -function. The

subthreshold slope degradation is calculated by the parameter

α, which would be 1 for an ideal subthreshold slope of 60mV
dec .

The effect of the mobile charges on the potential is largest

at the barrier, whereas it becomes negligible for increasing

distance along the x-axis. Therefore, the resulting inversion

layer
Q

′
i,s

2 of the channels surface is calculated by assuming

a constant charge density along the channel. Especially for

pure ballistic transport, this assumption fits well, because the

mobile charges are not able to change their energy level. This

behavior leads to an constant current in x-direction at each

energy level. Hence, the inversion charge shields a part of the

gate voltage, whereas only a reduced gate voltage influences

the channel region:

V
′
g = Vg −

(
Q

′
i,s

2 · Cox

)
. (4)

This method leads to an almost constant barrier height in the

above threshold region. In the following potential equation,

this reduced gate bias V
′
g is used as a boundary condition

along the gate electrode as well for the calculation of the

long channel surface potential in Eq. (7).

Boundary conditions
The potential within the channel is calculated by the

surrounding boundary conditions shown in Fig. 4. The

applied boundary conditions are the gate potential Eq. (4)

and the effective built-in potential Eq. (5) which describes

the potential at the source and drain to channel junctions.

In the following equations the calculation of the effective

built-in potential is introduced:

Φbi,eff,s/d = Φbi,s/d ±ΔΦbi,s/d, (5)

with the built-in potential in source and drain region Φbi,s/d.

Whereby ΔΦbi,s/d is calculated by [10]:

ΔΦbi,s/d = Φbi,s/d + Vs/d − Φsp + λ2 · q
εsi
·ND (6)

×
[
1−

√
1 +

2(Φbi,s/d+Vs/d−Φsp)

λ2 q
εsi

ND

]
,



with the donor doping concentration ND, silicon permittiv-

ity εsi, drain and source potential Vs/d, screening length λ.

The long channel surface potential Φsp is the potential at the

channel to oxide junction:

Φsp = Vg − Vfb. (7)

Whereby the flatband voltage Vfb is adopted to the TCAD

results.

Strategy of Decomposing
The first component consists of a closed-form solution of the

2D Laplace equation in the 4-corner channel region. As shown

in Fig. 4(a) the potential at the junctions consists of an mixture

of constant and parabolic shaped potentials.
Decomposing this four corner structure of the channel into

two separate two-corner structures, source related case of the

channel and drain related case of the channel, leads to a much

simpler calculation of the electrostatic channel potential.
In a next step, the mixed boundary conditions are separated

into both cases, the case of constant boundary conditions (see

Fig. 4(b), 4(d)) and the parabolic shaped (see Fig. 4(c), 4(e)).

Finally, the decomposing leads to four separate two-corner

structures.

Figure 4. Decomposition of the boundary conditions of a DG MOSFET. (a)
Boundary conditions of the whole device with parabolically shaped potentials
at the channel junctions. (b) source- (d) drain-related case conditions with
constant boundary for 2D Laplace solution. (c) source- (e) drain-related case
conditions for 2D solution with parabolic boundaries at the channel junctions
[10].

Conformal Mapping
The conformal mapping technique, or more specifically the

Schwarz-Christoffel transformation is applied to map the de-

vice and its boundary conditions depending on x and y into

the upper half of a complex w-plane depending on u and v
[12]:

w = u+ jv = cosh

(
π(x+ jy)

Δy

)
. (8)

Laplace Equation
The Laplace equation within the mapped w-plane is given by

[13]:

ϕ(u, v) =
1

π

∫ ∞

−∞

v

(u− ū)2 + v2
· ϕ(ū) · dū, (9)

with ϕ(ū) as the mapped boundary conditions along the

device geometry. In a further step, source and drain potential

extensions are calculated and connected with the channel

potential. At the end a set of closed-form analytical equations

for the potential in the device cross-section is obtained [10].

B. Link Between Electrostatics and NEGF

Because the NEGF is a very time consuming calculation

method and each dimension dramatically increases the cal-

culation effort, a one dimensional NEGF is implemented.

Therefore, one dimensional slices of the conduction band

in x-direction Ec(x) need to be extracted out of the 2D

potential solution (Fig. 1). Within the NEGF, each slice of

the conduction band is treated to be independent. Using more

slices, produces higher accuracy for the 2D device behavior,

on the other hand using less slices gives higher speed. In this

case, there are only two slices extracted out of the 2D profile.

One at the channel surface Ec,s(x) and the other at the channel

center Ec,c(x) (see Fig. 6a). Applying the 1D NEGF, Ec,s(x)
leads to Js and Ec,c(x) leads to Jc, respectively (see Fig. 3).

C. Quantum Confinement

Quantum confinement is an quantum mechanical effect

which influences heavily the behavior of transistors. It plays

an important role for ultra-thin transistors with a channel

thickness below 4 nm. This effect is mainly implemented

in compact models by an adoption of the threshold voltage

[14] as well as the flatband voltage [15]. Common NEGF

based TCAD simulators considers this 2 dimensional effect by

solving Schroedinger’s equation in the confinement direction.

The 1D model needs to do it in a compact way and includes

this quantum effect by an addition of the energy ΔE to the

physical value of the flatband voltage:

Vfb = Vfb,phy +ΔE. (10)

This energy change caused by the confinement within the

channel caused by the small channel thickness tch is given

by [11]:

ΔE =
�
2π2

2met2ch
. (11)

D. Current Calculation

Supriyo Datta presented in [5] and [16] a self-consistent

1D NEGF method for considering quantum current transport

in highly doped resistors. Turning this method into a straight-

forward calculation makes the algorithm much faster and also

suitable for this compact transistor model. A fundamental

description of the Green’s function is given by [17], [18], [19].

The movement of the electrons within the parabolic conduction



band of the semiconductor is described by the effective mass

Hamiltonian H = −(�2/2m)∇2). The longitudinal part of the

Hamiltonian is given by:

HL = Ec − �
2d2

2mdx2
+ U(x), (12)

with Ec as the physical conduction band energy of doped

silicon. The 1D energy profile of the conduction band, cal-

culated by the potential solution from Section II-B at the

discrete positions inside the device, is used as U(x) in Eq.

(12). Applying for the longitudinal Hamiltonian, a discrete

lattice in real space results in the Hamiltonian matrix HL.

The finite difference method is used to approximate the second

order derivative of Eq. (12) in Matrix form:

HL =

⎡
⎢⎢⎣

Ec+2t+U(1) −t ··· 0
−t Ec+2t+U(2) ··· 0

...
...

. . .
...

0 0 ··· −t
0 0 ··· Ec+2t+U(N)

⎤
⎥⎥⎦ (13)

with the Hamiltonian t = �
2/2ma2 and a as the grid size.

The self-energy functions Σ1 and Σ2 describe the connection

of the device to the semi infinite contacts, using open bound-

ary conditions. Both functions treat the device to just have

outgoing waves at the ends. Σ1,2 depend on the energy and

are not hermitian, like the Hamiltonian matrix. The self-energy

terms change the Hamiltonian from HL to ĤL, which have

an effect on their energies and eigenstates. Secondly, the self-

energy terms add an imaginary energy part to the broadening

functions [Γ1] and [Γ2]:

Σ1 =

⎡
⎢⎢⎢⎣
−t exp(ik1a) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎦ , (14)

where (k1a) is calculated with the help of the following

equation:

E = Ec + U(1) + 2t(1− cos(k1a)), (15)

whereby E is the considered energy level. The Γ1,2 functions

broaden the energy level due to the connections of the device

with the leads. An electron initially placed in that state will

escape into the left and right leads with the time constant �/γ.

Whereby γ denotes one element of the Γ1,2 matrix:

Γ1 = i
[
Σ1 − Σ+

1

]
, Γ2 = i

[
Σ2 − Σ+

2

]
. (16)

The energy level is broaden from a delta-function δ(E − ε)
into a line of a shape that does not have to be Lorentzian.

The retarded Green’s function [G] represents the device’s

system response to an input stimulus. It consists of a matrix

subtraction of the considered energy level E, the Hamiltonian

matrix [HL] and the self-energy functions of each contact [Σ1]
and [Σ2]:

G(E) =
[
EI −HL − Σ1 − Σ2

]−1
, (17)

whereby I constitutes the identity matrix. Due to the discrete

lattice with about 100 × 100 matrices, the inversion of the

matrix is a time consuming part of the model. In the next

step, the formalism separates the spectral function [A] into

the source [A1] and the drain [A2] spectral function. Both are

formulated out of the Green’s function multiplying with the Γ
of each contact:

A1 = GΓ1G
+, A2 = GΓ2G

+. (18)

Filling up the spectral function [A], which could also be

seen as the available density of states, according to the Fermi

function of each contact F1 and F2, leads to the electron

density matrix [ρ̃(E)] of a considered energy level E:

[ρ̃(E)] =
F1[A1(E)] + F2[A2(E)]

2π
. (19)

Regarding to the high doping of the source and drain regions,

the semiconductor is degenerated and the Boltzmann statistics

needs to be replaced by the Fermi distribution. The Fermi

function is calculated for a 2D device structure described by

the F0 distribution [20]:

n = Nc · F0(η) (20)

F0(η) =

∫ ∞

0

ξ0

1 + eξ−η
dξ, (21)

η =
Ef − Ec

kB · T . (22)

where Nc is the effective density-of-states, and Ef the Fermi

level which is adjusted to achieve a good current characteristic

according to the ultra-thin channel thickness.

To calculate the current density in x-direction, the current

operator −(i�mL)δ/δx is presented in matrix form using the

finite difference representation as:

[Jop] = (t/�N)

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −j 0 0 · · · 0
+j 0 −j 0 · · · 0

0 +j 0 −j · · · ...
...

...
...

...
. . . −j

0 0 0 · · · +j 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (23)

with N being the number of points on the lattice. The matrix

multiplication of the density matrix [ρ̃(E)] and the current

operator [Jop] leads to the current density J̃(E, y, z) at the

considered energy level E:

J̃(E, y, z) = −q · Trace(ρ̃(E)Jop). (24)

To get the total current density, equation (24) must be

integrated over energy, which is computationally extensive,

because all associated density matrices are needed:

J(y, z) =

∫
J̃(E, y, z)dE. (25)

Furthermore, the total current density must also be integrated

over the channel cross section to describe the two dimensional

device behavior.



III. APPROXIMATIONS FOR INCREASED NUMERICAL

EFFICIENCY

The calculation time of the model depends in a large part

on the integration over energy for all current densities (Fig.

5). An reduction from hundreds to few calculations speeds

up the total calculation time of the model by almost the same

factor. Also the description of the multidimensional device

behavior slows down the simulation speed.

A. Energy Dependent Approximation

In order to do so without losing much accuracy, the current

density is only calculated at some distinctive energy levels,

which represent significant points (see Fig. 5). In this case,

the current density for the associated energy levels is approx-

imated with i = 4 parabolic functions which are built out of

j = 9 significant points. As it is shown in Fig. 5, the current

density per energy in log-scale is almost parabolic or linear

shaped. The interpolation parameters a, b, c of the quadratic

functions in Eq. (26) are calculated using the log-scaled values

of the calculated current density log10(J̃(Ei, y, z)). In the

next step, each parabolic function to the power of 10 is built

matching three of the 9 significant points. In the last step, the

current density integration for the parabolic functions is done

by:

Ji(y, z) =

Ej+2∫
Ej

(10ai·E2+bi·E+ci) dE. (26)

Summing up all four parts of the current density leads to

the total 1D current density for all associated energies at one

specific y,z-position in the channel cross section:

J(y, z) =

4∑
i=1

Ji(y, z). (27)

To describe the behavior of the current density depending

on energy in a good manner, the significant points have to

be chosen carefully. The first distinctive point is located at

the energy level of the source conduction band Ec. At this

energy level the current from source to drain starts to flow. A

further sampling point is located at the Fermi level Ef1. The

next sampling point equals the height of the energy barrier

Eb (see Fig. 5). In most cases the biggest current density is

located at this energy level. For energies above the energy

barrier, the current density decreases. To approximate this

trend of the thermionic emission current at the top of the

energy barrier, the current density is calculated at 3 additional

energies above the barrier. To account for the SD tunneling

current the other 4 sampling points are distributed between

the source energy Ef1 and the energy barrier Eb.

B. Geometry Dependent Approximation

Considering plenty of 1D current densities to describe the

3D device increases the calculation effort. The number of

1D current density calculations needs to be a minimum.
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Figure 5. Surface Js and center Jc current density at the energy levels
for tch = 2nm at Vds = 0.05V. The precise current density is calculated
at each energy level by Eq. (24). The "Approx. current density" shows the
current density as it is approximated by the mathematical functions of Eq.
(26), which are defined by the current densities calculated only at positions
marked by an "x". Additionally, the energy level of the conduction band
Ec, the source Fermi level Ef1 and the hight of the energy barrier Eb are
shown. Considering the subthreshold region, in contrast to 10 nm channel
length device, the current density at energies below the energy barrier of the
6 nm device is bigger and almost constant by reason of SD-tunneling.

Therefore, the current density J(y, z) is calculated for only

two slices, surface (current density Js), and the other at the

channel center (current density Jc) (see Fig 3). A closed-form

integration using a parabolic function between both positions

approximates the half of the device current Id. Due to the

symmetry of the device the drain current can be calculated by

a multiplication with 2 and the device width W:

Id = 2W ·
tch
2∫

0

(a · y2 + b · y + c) dy. (28)



IV. MODEL VERIFICATION

The applied device parameters for the simulations are:

lsd = 10nm, tox = 1nm, Nsd = 2 · 1020 cm−3, εox = 25 · ε0,

effective mass of carriers m = 0.19 · m0, the Fermi level

Ef1,f2 as well as the effective density-of-states Nc is fitted for

each channel thickness. The channel length and the channel

thickness are individual for each simulation result and are

mentioned in each figure. The accurate potential calculation of

6 nm channel length device is shown in Fig. 6(a). Especially

for the tunneling current, the barrier length is very important.

Fig. 6(b) illustrates the electron density for the associated

energies in one 1D slice calculated by the model, which clearly

shows interference in the band structure. Also it can be seen

that the electron density within the energy barrier does not

equals zero and hence shows SD tunneling.

The transfer characteristic of the 6, 8, 10, 20 nm channel

length device for a channel thickness of tch = 2nm is shown

in Fig. 7(a). The figure highlights the SD tunneling effect,

because the subthreshold slope gets worse for the device with

a 6 nm channel length. The thermionic emission current is

almost the same for a channel length of 10 nm and 20 nm

through the ballistic current calculation. The strong influence

of the small channel thickness on the threshold voltage can

be seen in Fig. 7(b). The threshold voltage of the device

is shifted because of the quantum confinement effect. The

currents are shown for the 6 nm channel length device and for

both channel thicknesses tch = 1.5, 2nm. The same influence

is shown in Fig. 7(c), where the channel thickness is varied

tch = 1.5, 2, 3 nm by a channel length of lch = 10nm.

Additionally, the slope of th 10 nm channel length devices is

close to the ideal subthreshold slope of 60mV
dec caused by the

good electrostatic control and less SD tunneling.

To highlight the SD-tunneling effects, the currents at a

temperature of 300 K are compared to the currents at 75 K

(see Fig. 8). For 75 K the thermionic current is repressed and

the total current is dominated by the SD tunneling. Figure

8 also indicates the ideal slope of 15 mV / dec, which could

be achieved at 75 K when only thermionic emission current

occurs. Whereas, the simulation indicates a much worse slope,

which is a result of the additional SD tunneling. The difference

between 75 K and 300 K of the 6 nm device is small because

the SD tunneling dominates in both cases. For the 10 nm

device, the difference is increased, in consequence of less

tunneling current.

The associated output characteristic at T=300 K for the

6 nm and 10 nm channel length device is given in Figure

9(a) and 9(b), respectively. The output as well as the transfer

characteristics of the semi-analytical NEGF model stay in

good agreement to the TCAD data.

V. CONCLUSION

In this work an semi-analytical approach for the calcu-

lation of the ballistic current in DG MOSFETs has been

introduced. The model is based on a combination of a 2D

analytical closed-form potential model and a compact non-

numeric NEGF formalism. The model implementation is done

in MATLAB and shows a good agreement with the TCAD

simulation data for transistors with ultra-short channel lengths

down to 6 nm and an ultra-thin body of 1.5 nm to 3 nm. The

SD-tunneling is calculated in a good way and highlighted at

low temperatures where the thermionic emission current is

repressed. The model correctly predicts this effect, because

it inherently includes thermionic emission and SD tunneling.

A variation of channel length and thickness confirms a good

scalability of the modeling approach. The analytic current

calculation of the 3D device using 1D current densities at a

few distinctive energies leads to a notable drop in calculation

time. Applying a standard laptop computer for the calculation

of the transfer characteristic shown in Fig. 7(a) which consists

of 70 bias steps is done in less than 10 s.
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Vds = 0.05V.
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Figure 7. Ballistic drain current per gate width of the transfer characteristic
for a drain voltage of Vds = 0.05V at T = 300K.
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Figure 8. Ballistic drain current characteristic for channel geometry of lch =
6, 10 nm, tch = 2nm and a drain bias of Vds = 0.05V at T = 75K
(dashed lines) and at 300K (solid lines). The triangle, showing a slope of
15 (60) mV/ dec denotes the ideal slope which could be reached for an pure
thermionic emission current at T = 75 (300)K.
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Figure 9. Ballistic output current characteristic of the DG MOSFET, for a
channel geometry of tch = 2nm at T = 300K.



ACKNOWLEDGMENTS

This work is supported by the German Federal Ministry of

Education and Research under contract No.03FH001I3. We

would like to thank Keysight Technologies for the license

donation of the software IC-CAP and AdMOS GmbH for

support.

REFERENCES

[1] Z. Ren, S. Goasguen, A. Matsudaira, S. S. Ahmed, K. Cant-
ley, Y. Liu, Y. Gao, X. Wang, and M. Lundstrom, “NanoMOS.”
https://nanohub.org/resources/1305, Mar 2016.

[2] J. Wang and M. Lundstrom, “Does Source-to-Drain Tunneling Limit
the Ultimate Scaling of MOSFETs?.” in International Electron Devices
Meeting IEDM, pp. 707–710, Dec. 2002.

[3] Q. Rafhay, R. Clerc, G. Ghibaudo, and G. Pananakakis, “Impact of
Source-to-Drain Tunnelling on the Scalability of Arbitrary Oriented Al-
ternative Channel Material nMOSFETs.” Solid-State Electronics, vol. 52,
no. 10, pp. 1474 – 1481, 2008.

[4] J. Watling, A. Brown, A. Asenov, A. Svizhenko, and M. Anantram,
“Simulation of Direct Source-to-Drain Tunnelling Using the Density
Gradient Formalism: Non-Equilibrium Greens Function Calibration.” in
International Conference on Simulation of Semiconductor Processes and
Devices SISPAD, pp. 267–270, 2002.

[5] S. Datta, “Nanoscale Device Modeling: the Green’s Function Method.”
Superlattices and Microstructures, vol. 28, no. 4, pp. 253 – 278, 2000.

[6] G. Fiori and G. Iannaccone, “NanoTCAD ViDES.”
https://nanohub.org/resources/5116, Sep 2014.

[7] O. Baumgartner and Z. S. et al., VSP-a Quantum-Electronic Simulation
Framework, pp. 701–721. Springer Science+Business Media, 2013.

[8] M. P. Anantram, S. S. Ahmed, A. Svizhenko, D. Kearney, and
G. Klimeck, “NanoFET.” https://nanohub.org/resources/1090, Mar 2016.

[9] F. Hosenfeld, M. Graef, F. Horst, A. Kloes, B. Iniguez, and F. Lime,
“Modeling Approach for Rapid NEGF-Based Simulation of Ballistic
Current in Ultra-Short DG MOSFETs.” in Mixed Design of Integrated
Circuits and Systems MIXDES - 23rd International Conference, pp. 52–
57, June 2016.

[10] M. Graef, T. Holtij, F. Hain, A. Kloes, and B. Iniguez, “Improved
Analytical Potential Modeling in Double-Gate Tunnel-FETs.” in Mixed
Design of Integrated Circuits Systems (MIXDES), pp. 49–53, June 2014.

[11] A. Kloes, M. Schwarz, T. Holtij, and A. Navas, “Quantum Confinement
and Volume Inversion in MOS3 Model for Short-Channel Tri-Gate
MOSFETs.” IEEE Transactions on Electron Devices, vol. 60, pp. 2691–
2694, Aug 2013.

[12] M. Schwarz, T. Holtij, A. Kloes, and B. Iniguez, “Analytical Compact
Modeling Framework for the 2D Electrostatics in Lightly Doped Double-
Gate MOSFETs.” Solid-State Electronics, vol. 69, pp. 72 – 84, 2012.

[13] E. Weber, Electromagnetic Fields, Vol.I., Mapping of Fields. John Wiley,
New York, 1950.

[14] J. Wang, A. Rahman, A. Ghosh, G. Klimeck, and M. Lundstrom, “On
the Validity of the Parabolic Effective-Mass Approximation for the I-
V Calculation of Silicon Nanowire Transistors.” IEEE Transactions on
Electron Devices, vol. 52, pp. 1589–1595, July 2005.

[15] D. Selim, S. Gamal, W. Fikry, and O. A.-E. Halim, “Rapid and
Efficient Method for Numerical Quantum Mechanical Simulation of
Gate-All-Around Nanowire Transistors.” in International Conference on
Microelectronics, pp. 229–232, May 2012.

[16] S. Datta, “MATLAB codes from: Nanoscale device modeling: the
Green’s function method.” https://nanohub.org/resources/19564, Oct
2013.

[17] E. N. Economou, Green’s Functions in Quantum Physics. Springer
Science+BusinessMedia, 2006.

[18] S. Datta, Quantum Transport: Atom to Transistor. Cambridge, 2005.
[19] S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge

University Press, 1997.
[20] R. Kim and M. Lundstrom, “Notes on Fermi-Dirac Integrals (3rd

Edition).” Sep 2008.

Fabian Hosenfeld received the Bachelor and Master
degree in electronic engineering from the Technische
Hochschule Mittelhessen (THM) in Friedberg, Ger-
many, 2013 and 2014, respectively. Currently he is
working towards his PhD degree at the University
Rovira i Virgili, Tarragona, Spain in cooperation
with the THM, Giessen. Since 2013 he is working
as a research assistant with the Research Group Na-
noelectronics / Device Modeling at the Competence
Center for Nanotechnology and Photonics, THM,
Giessen, Germany.

Fabian Horst recieved the Bachelor and Master
degree in electronic engineering from the Technische
Hochschule Mittelhessen (THM) in Giessen, Ger-
many in 2014 and 2015, respectively. Currently he
is working towards his PhD degree at the University
Rovira i Virgili, Tarragona, Spain in cooperation
with the THM, Giessen. Since 2014 he is working
as a research assistant with the Research Group Na-
noelectronics / Device Modeling at the Competence
Center for Nanotechnology and Photonics, THM,
Giessen, Germany.

Michael Graef is currently pursuing the Ph.D.
degree in electrical engineering from the Universitat
Rovira i Virgili, Tarragona, Spain. He has been a
Research Assistant with the Research Group Na-
noelectronics/Device Modeling, Competence Cen-
ter for Nanotechnology and Photonics, Technische
Hochschule Mittelhessen, Giessen, Germany, since
2012.

Atieh Farokhnejad received the Bachelor degree in
Electronic Engineering from Dr. Shariaty Technical
University of Tehran, Iran, in 2012. Since 2015,
she holds the M.Sc. degree in Information and
Communications issued by Technische Hochschule
Mittelhessen (THM) in Friedberg, Germany. Cur-
rently she is working towards her PhD degree at
the University Rovira i Virgili, Tarragona, Spain in
cooperation with the THM, Giessen.

Alexander Kloes (M’95) received the Diploma and
Ph.D. degrees in electrical engineering from the
Solid-State Electronics Laboratory, Technical Uni-
versity of Darmstadt, Darmstadt, Germany, in 1993
and 1996, respectively. He has been a Professor
with Technische Hochschule Mittelhessen, Giessen,
Germany since 2002.

Benjamín Iñíguez received the B.S., M.S., and
Ph.D. degrees in physics from the University of the
Balearic Islands, Balearic Islands, Spain, in 1989,
1992, and 1996, respectively. He joined the Univer-
sitat Rovira i Virgili, Tarragona, Spain, as Titular
Professor in 2001, and he became a Full Professor
in 2010. He obtained the ICREA Academia Award
(ICREA Institute, Catalonia) in 2009 and 2014.

François Lime received the M.S. and Ph.D. de-
grees from the Institut National Polytechnique de
Grenoble, Grenoble, France, in 2000 and 2004, re-
spectively. He joined the Universitat Rovira i Virgili,
Tarragona, Spain, as a Ramon y Cajal Researcher,
in 2009, where he has been an Associate Profes-
sor since 2014. His current research interests are
compact modelling of multiple-gate MOSFETs and
OTFTs and the electrical characterization of these
devices.


