PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Treatment of petroleum refinery effluent using ultrasonic irradiation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultrasonic irradiation is one of the advanced oxidation methods used in wastewater treatment. In this study, ultrasonic treatment of petroleum refinery effluent was examined. An ultrasonic homogenizator with a 20 kHz frequency and an ultrasonic bath with a 42 kHz frequency were used as a source for ultrasound. The effects of parameters such as ZnO amount, ozone saturation time, and type of ultrasound source on the degradation of petroleum refinery effluent were investigated. The degradation of petroleum refinery effluent was measured as a change in initial chemical oxygen demand (COD) and with time. According to the results, degradation increased with the addition of ZnO in an ultrasonic probe. There was also a positive effect of ozone saturation before sonication then applying ultrasound on the degradation for an ultrasonic probe. It was observed that there was no positive effect of ZnO addition and ozone saturation on degradation for an ultrasonic bath.
Słowa kluczowe
Rocznik
Strony
20--25
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Hitit University, Engineering Faculty, Chemical Engineering Department, Çorum, Turkey
Bibliografia
  • 1. Bharati, R. & Suresh, S. (2017). Biosynthesis of ZnO/ SiO2 nanocatalyst with palash leaves’ powder for treatment of petroleum refinery effluent. Resource-Efficient Technol. 3 (4), 528-541. DOI: 10.1016/j.reffit.2017.08.004.
  • 2. Chen, C., Wei, L., Guo, X., Guo, S. & Yan, G. (2014). Investigation of heavy oil refinery wastewater treatment by integrated ozone and activated carbon-supported manganese oxides. Fuel Proc. Technol. 124, 165-173. DOI: 10.1016/j.fuproc.2014.02.024.
  • 3. Chen, C., Yu, J., Yoza, B.A., Li, Q.X. & Wang, G. (2015). A novel “wastes-treat-wastes” technology: Role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater. J. Environ. Manage. 152, 58-65. DOI: 10.1016/j.jenvman.2015.01.022.
  • 4. Davarnejad, R., Mohammadi, M. & Ismail, A.F. (2014). Petrochemical wastewater treatment by electro-Fenton process using aluminum and iron electrodes: Statistical comparison. J. Water Proc. Eng. 3, 18-25. DOI: 10.1016/j.jwpe.2014.08.002.
  • 5. Hasan, D.B., Abdul Aziz, A.R. & Daud, W.M.A. (2012). Oxidative mineralization of petroleum refinery effluent using Fenton-like process. Chem. Eng. Res. and des. 90 (2), 298-307. DOI: 10.1016/j.cherd.2011.06.010.
  • 6. Diya’uddeen, B.H, Wan Daud, W.M., Abdul Aziz, A.R. (2011). Treatment technologies for petroleum refinery effluents: A review. Proc. Saf. and Environ. Prot. 89, 95-105. DOI: 10.1016/j.psep.2010.11.003.
  • 7. Aljoboury, D.A, Palaniandy, P., Bin Abdul Aziz, H. & Feroz, S. (2015). Treatment of petroleum wastewater using combination of solar photo-two catalyst TiO2 and photo-Fenton process. J. Environ. Chem. Eng. 3, 1117-1124. DOI: 10.1016/j.jece.2015.04.012.
  • 8. Shahrezaei, F., Mansouri, Y., Zinatizadeh, A.A.L. & Akhbari, A. (2012). Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles. Powder Technol. 221, 203-212. DOI: 10.1016/j.powtec.2012.01.003.
  • 9. Khan, W.Z, Najeeb, I., Tuiyebayeva, M. & Makhtayeva, Z. (2015). Refinery wastewater degradation with titanium dioxide, zinc oxide, and hydrogen peroxide in a photocatalytic reactor. Proc. Safety and Environ. Prot. 94, 479-486. DOI: 10.1016/j.psep.2014.10.007.
  • 10. Al-Muhtaseb, A.H. & Khraisheh, M. (2015). Photocatalytic removal of phenol from refinery wastewater: Catalytic activity of Cu-doped titanium dioxide. J. Wat. Proc. Eng. 8, 82-90. DOI: 10.1016/j.jwpe.2015.09.004.
  • 11. Saien, J. & Nejati, H. (2007). Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. J. Hazard. Mater. 148, 491-495. DOI: 10.1016/j.jhazmat.2007.03.001.
  • 12. Stepnowski, P., Siedlecka, E.M, Behrendb, P. & Jastorff, B. (2002). Enhanced photo-degradation of contaminants in petroleum refinery wastewater. Water. Resour. 36, 2167-2172. DOI: 10.1016/S0043-1354(01)00450-X.
  • 13. Talei, M., Mowla, D., Esmaeilzadeh, F. (2015). Ozonation of an effluent of oil refineries for COD and sulfide removal. Des. and Wat. Treat. 56(6), 1648-1656. DOI: 10.1080/19443994.2014.951968.
  • 14. Diya’uddeen, B.H., Pouran, S.R., Abdul, Aziz, A.R., Nashwan, S.M., Ashri, W.M., Daud, W. & Shaaban, M.G. (2015). Hybrid of Fenton and sequencing batch reactor for petroleum refinery wastewater treatment. J. Ind. and Eng. Chem. 25, 186-191. DOI: 10.1016/j.jiec.2014.10.033.
  • 15. Tony, M.A., Purcell, P.J. & Zhao, Y. (2012). Oil refinery wastewater treatment using physicochemical, Fenton and Photo- Fenton oxidation processes. J. Environ. Sci. Health, Part A. 47, 435-440. DOI: 10.1080/10934529.2012.646136.
  • 16. Sun, Y., Zhang, Y. & Quan, X. (2008). Treatment of petroleum refinery wastewater by microwave-assisted catalytic wet air oxidation under low temperature and low pressure. Sep. and Pur. Technol. 62, 565-570. DOI: 10.1016/j.seppur.2008.02.027.
  • 17. Rueda-Marquez, J.J., Levchuk, I., Salcedo, I., Acevedo- Merino, A. & Manzano, M.A. (2016). Post-treatment of refinery wastewater effluent using a combination of AOPs (H2O2 photolysis and catalytic wet peroxide oxidation) for possible water reuse. Comparison of low and medium pressure lamp performance. Water Resour. 91, 86-96. DOI: 10.1016/j.watres.2015.12.051.
  • 18. Sponza, D.T. & Oztekin, R. (2010). Removals of PAHs and acute toxicity via sonication in a petrochemical industry wastewater. Chem. Eng. J. 162, 142-150. DOI: 10.1016/j. cej.2010.05.014.
  • 19. Sponza, D.T. & Oztekin, R. (2011). Removals of some hydrophobic polyaromatic hydrocarbons(PAHs) and Daphnia magna acute toxicity in a petrochemical industry wastewater with ultrasound in Izmir-Turkey. Sep. and Pur. Tech. 77, 301-311. DOI: 10.1016/j.seppur.2010.12.021.
  • 20. Rasheed, Q.J, Pandian, K. & Muthukumar, K. (2011). Treatment of petroleum refinery wastewater by ultrasounddispersed nanoscale zero-valent iron particles. Ultr. Sonochem.18, 1138-1142. DOI: 10.1016/j.ultsonch.2011.03.015.
  • 21. Sangave, P.C. & Pandit, A.B. (2004). Ultrasound pretreatment for enhanced biodegradability of the distillery wastewater. Ultr. Sonochem. 11, 197-203. DOI: 10.1016/j.ultsonch.2004.01.026.
  • 22. Sangave, P.C. & Pandit, A.B. (2006). Ultrasound and enzyme assisted biodegradation of distillery wastewater. J. Environ. Manage. 80, 36-46. DOI: 10.1016/j.jenvman.2005.08.010.
  • 23. Ramteke, L.P. & Gogate, P.R. (2015). Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes. J. Ind. and Eng. Chem. 28, 247-260. DOI: 10.1016/j.jiec.2015.02.022.
  • 24. Gogate, P.R., Mujumdar, S. & Pandit, A.B. (2003). Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction. Adv. Environ. Resour. 7, 283-299. DOI: 10.1016/S1093-0191(01)00133-2.
  • 25. Gogate, P. & Pandit, A.B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8, 501-551. DOI: 10.1016/S1093-0191(03)00032-7.
  • 26. Jamalluddin, N.A. & Abdullah, A.Z. (2011). Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature. Ultr. Sonochem. 18, 669-678. DOI: 10.1016/j.ultsonch.2010.09.004.
  • 27. Abdullah, A.Z. & Liang, P.Y. (2010). Heat treatment effects on the characteristics and sonocatalytic performance of TiO2 in the degradation of organic dyes in aqueous solution. J. Hazard. Mater. 173, 159-167. DOI: 10.1016/j. jhazmat.2009.08.060.
  • 28. Anju, S.G., Jyothi, K.P., Joseph, S., Suguna, Y. & Yesodharan, E.P. (2012). Ultrasound assisted semiconductor mediated catalytic degradation of organic pollutants in water: Comparative efficacy of ZnO, TiO2 and ZnO-TiO2. Res. J. Rec. Scien. 1, 191-201.
  • 29. Yılmaz, E. & Fındık, S. (2017). Sonocatalytic treatment of baker’s yeast effluent. J. wat. Reu. And Des.7(1) , 88-96. DOI: 10.2166/wrd.2016.166.
  • 30. Sangave, P.C., Gogate, P.R. & Pandit, A.B. (2007). Ultrasound and ozone assisted biological degradation of thermally pretreated and anaerobically pretreated distillery wastewater. Chemosp. 68, 42-52. DOI:10.1016/j.chemosphere.2006.12.052.
  • 31. Eren, Z. (2012). Ultrasound as a basic and auxiliary process for dye remediation: A review. J. Environ. Manage. 104, 127-141. DOI: 10.1016/j.jenvman.2012.03.028.
  • 32. Teo, K.C., Xu, Y. & Yang, C. (2001). Sonochemical degradation for toxic halogenated organic compounds. Ultr. Sonochem. 8, 241-246. DOI: 10.1016/S1350-4177(01)00083-9.
  • 33. Gogate, P.R. & Katekhaye, S.N. (2012). A comparison of the degree of intensification due to the use of additives in ultrasonic horn and ultrasonic bath. Chem. Eng. Process. 61, 23-29. DOI: 10.1016/j.cep.2012.06.016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0605d6ce-4a63-426b-a387-52382e57dc3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.