PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Abietinella abietina Extracts on the Germination and Seedling Emergence of Picea crassifolia: Results of Greenhouse Experiments

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Moss cushion plays an important role in recruitment of vascular plants. In this study, we examined the effects of water soluble extracts (WSE) of Abietinella abietina on germination of Qinghai spruce (Picea crassifolia) and the effects of moss substrates (A. abietina) on seedling emergence of P. crassifolia in two greenhouse experiments. We found that the WSE of moss affected germination of P. crassifolia in two ways: (1) the WSE reducing the risk of fungal infection to the seeds, improve the germination rate; and (2) the WSE affects germination by its concentration, that is, low concentrations of WSE (i.e., 0.5 mg ml-1 and 5 mg ml-1) stimulate, while high concentrations (i.e., 50 mg ml-1) inhibit it. In seedling emergence experiments, we detected that the moss substrates (both thick and thin mosses) facilitate the emergence of P. crassifolia in dry and intermediate moisture conditions, but inhibit it in moist conditions. In bare soil, the P. crassifolia emergence was also controlled by moisture conditions; the highest (60%) and the lowest (35%) emergence occurred in the moist conditions and dry conditions, respectively. We also found that P. crassifolia seedlings were thinner and taller, but their number higher in moss cushion than in bare soil. Thus we conclude that there is nurse effect of A. abietina cushion on recruitment of P. crassifolia in both dry and intermediate moisture conditions.
Rocznik
Strony
357--368
Opis fizyczny
Bibliogr. 68 poz., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Tianshui south road 222, Lanzhou, China
autor
  • College of Pastoral Agriculture Science and Technology, Lanzhou University, Jiayuguan west road 768, Lanzhou, China
autor
  • State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Tianshui south road 222, Lanzhou, China
autor
  • State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Tianshui south road 222, Lanzhou, China
autor
  • State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Tianshui south road 222, Lanzhou, China
autor
  • State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Tianshui south road 222, Lanzhou, China
autor
  • State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Tianshui south road 222, Lanzhou, China
autor
  • State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Tianshui south road 222, Lanzhou, China
autor
  • State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Tianshui south road 222, Lanzhou, China
autor
  • State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Tianshui south road 222, Lanzhou, China
autor
  • State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Tianshui south road 222, Lanzhou, China
Bibliografia
  • [1] Asakawa Y. 2007 — Biologically active compounds from bryophytes — Pure Appl. Chem. 79: 557–580.
  • [2] Barlow J., Peres C. A., Henriques L. M. P., Stouffer P. C., Wunderle J. M. 2006 — The responses of understory birds to forest fragmentation, logging and wildfires: An Amazonian synthesis — Biol. Conservation, 128:182–192.
  • [3] Basile A., Sorbo S., López-Sáez J. A., Cobianchi R. C. 2003 — Effects of seven pure flavonoids from mosses on germination and growth of Tortula muralis HEDW. (Bryophyta) and Raphanus sativus L. (Magnoliophyta) — Phytochemistry, 62: 1145–1151.
  • [4] Baskin C. C., Baskin J. M. 1998 — Seeds. Ecology, biogeography, and evolution of dormancy and germination, 1st ed. — Academic Press, San Diego, CA. Press, pp. 70–95.
  • [5] Bates J. W. 2009 — Mineral nutrition and substratum ecology (In: Mosses biology, Eds: B. Goffinet, A.J. Shaw) — Cambridge Univ. Press, pp. 300–356.
  • [6] Bie Q., Zhao C. Y., Qing W. L., He L. 2013 — Dynamic change of Picea crassifolia in Qilian Mountain in recent 40 years — J. Arid Land Resources and Environment. 27: 176–180 (in Chinese, English summary).
  • [7] Bourgeois B., Hugron S., Poulin M. 2012 — Establishing a moss cover inhibits the germination of Typha latifolia, an invasive species, in restored peatlands — Aquatic Botany, 100: 76–79.
  • [8] Brant J. B., Sulzman E. W., Myrold D. D. 2006 — Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation — Soil Biol. Biochem. 38: 2219–2232.
  • [9] Brooker R. W., Maestre F. T., Callaway R. M., Lortie C. L., Cavieres L. A., Kunstler G., Liancourt P., Tielborger K., Travis J. M. J., Anthelme F., Armas C., Coll L., Corcket E., Delzon S., Forey E., Kikvidze Z., Olofsson J., Pugnaire F., Quiroz C. L., Saccone P., SchiVers K., Seifan M., Touzard B., Michalet R. 2008 — Facilitation in plant communities: the past, the present, and the future — J. Ecol. 96: 18–34.
  • [10] Bukvički D., Veljić M., Soković M., Grujić S., Marin P. D. 2012 — Antimicrobial activity of methanol extracts of Abietinella abietina, Neckera crispa, Platyhypnidium riparoides, Cratoneuron filicinum and Campylium protensum mosses — Arch. Biol. Sci. 64: 911–916.
  • [11] Callaghan T. V., Collins N. J., Callaghan C. H. 1978 — Photosynthesis, growth and reproduction of Hylocomium splendens and Polytrichum commune in Swedish Lapland — Oikos, 31: 73–88.
  • [12] Callaway R. M., Cipollini D., Barto K., Thelen G. C., Hallett S. G., Prati D., Stinson K., Klironomos J. 2008 — Novel weapons: Invasive plant suppresses fungal mutualists in America but not in its native Europe — Ecol. 89: 1043–1055.
  • [13] Canham C. D., Finzi A. C., Pacala S. W., Burbank D. H. 1994 — Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees — Can. J. For. Res. 24: 337–349.
  • [14] Cantor A., Hale A., Aaron J., Traw M. B., Kalisz S. 2011 — Low allelochemical concentrations detected in garlic mustard-invaded forest soils inhibit fungal growth and AMF spore germination — Biol Invasions, 13: 3015–3025.
  • [15] Carleton T. J., Dunham K. M. 2003 — Distillation in a boreal mossy forest floor — Can. J. For. Res. 33: 663—671.
  • [16] Cushman S. A. 2006 — Effects of habitat loss and fragmentation on Amphibians: A review and prospectus — Biol. Conserv. 128: 231–240.
  • [17] Davey M. L., Currah R. S. 2006 — Interactions between mosses (Bryophyta) and fungi — Botany, 84: 1509–1519.
  • [18] De Jong T. J., Klinkhamer P. G. L. 1988 — Seedling establishment of the biennials Cirsium vulgare and Cynoglossum officinale in a sand-dune area: the importance of water for differential survival and growth — J. Ecol. 76: 393–402.
  • [19] Donath T. W., Eckstein R. L. 2010 — Effects of bryophytes and grass litter on seedling emergence vary by vertical seed position and seed size — Plant Ecol. 207: 257–268.
  • [20] Doxford S. W., Ooi M. K., Freckleton R. P. 2013 — Spatial and temporal variability in positive and negative plant–bryophyte interactions along a latitudinal gradient — J. Ecol. 101: 465–474.
  • [21] During H. J., Tooren B. F. 1990 — Bryophyte interactions with other plants — Bota J. Linnean Soci. 104: 79–98.
  • [22] Equihua M., Usher M. B. 1993 — Impact of carpets of the invasive moss Campylopus introflexus on Calluna vulgaris regeneration — J. Ecol. 81: 359–365.
  • [23] Freestone A. L. 2006 — Facilitation drives local abundance and regional distribution of a rare plant in a harsh environment — Ecol. 87: 2728–2735.
  • [24] Geist H. J., Lambin E. F. 2002 — Proximate causes and underlying driving forces of tropical deforestation tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations — BioScience, 52: 143–150.
  • [25] Gornall J. L., Woodin S. J., Jónsdóttir I. S., Wal R. 2011 — Balancing positive and negative plant interactions: how mosses structure vascular plant communities — Oecol. 166: 769–782.
  • [26] Gou X., Chen F., Yang M., Li J., Peng J., Jin L. 2005 — Climatic response of thick leaf spruce (Picea crassifolia) tree-ring width at different elevations over Qilian Mountains, northwestern China — J. Arid Environ. 61: 513–524.
  • [27] Groeneveld E. V. G., Massé A., Rochefort L. 2007 — Polytrichum strictum as a nurse-plant in peatland restoration — Rest. Ecol. 15: 709–719.
  • [28] Hobbs R. J. 1985 — The persistence of Cladonia patches in closed heathland stands. — Lich. 17: 103–109.
  • [29] Hörnberg G., Ohlson M., Zackrisson O. 1997 — Influence of mosses and microrelief conditions on Picea abies seed regeneration patterns in boreal old-growth swamp forests — Can. J. For. Res. 27: 1015–1023.
  • [30] Huneck S., Meinunger L. 1990 — Plant growth regulatory activities of mosses: a contribution to the chemical ecology of mosses and liverworts (In: Mosses, their chemistry and chemical taxonomy, Eds: H. D. Zinsmeister, R. Mues) — Proc. Phyt. Soc. Eur. 29, Oxford, pp. 289–298.
  • [31] Ingerpuu L., Liira J., Pärtel M. 2005 — Vascular plants facilitated bryophytes in a grassland experiment — Plant Ecol. 180: 69–75.
  • [32] Jacinto Tabanez A. A., Viana V. M. 2000 — Patch structure within Brazilian Atlantic forest fragments and implications for conservation — Biot. 32: 925–933.
  • [33] Jeschke M., Kiehl K. 2008 — Effects of a dense moss layer on germination and establishment of vascular plants in newly created calcareous grasslands — Flora, 203: 557–566.
  • [34] Kato-Noguchi H., Seki T., Shigemori H. 2010 — Allelopathy and allelopathic substance in the moss Rhynchostegium pallidifolium — J. Plant Physiol. 167: 468–471.
  • [35] Keizer P. J., Van Tooren B. F., During H. J. 1985 — Effects of bryophytes on seedling emergence and establishment of short-lived forbs in chalk grassland — J. Ecol. 73: 493–504.
  • [36] Liang E. Y., Shao X. M., Eckstein D., Huang L., Liu X. B. 2006 — Topography-and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau — Fore. Ecol. Management 236: 268–277.
  • [37] Liu X. D., Zhang X. L. 2004 — The natural forest: The life line of the Hexi — Forest and Humankind, 4: 16–19 (in Chinese, English summary).
  • [38] McCarter C. P., Price J. S. 2014 — Ecohydrology of Sphagnum moss hummocks: mechanisms of capitula water supply and simulated effects of evaporation — Ecohydrology, 7: 33–44.
  • [39] Meiners S. J., Kong C. H. 2012 — Introduction to the special issue on allelopathy — Plant Ecol. 213: 1857–1859.
  • [40] Meiners S. J. 2014 — Functional correlates of allelopathic potential in a successional plant community — Plant Ecol. 215: 661–672.
  • [41] Michel P., Burritt D. J., Lee W. G. 2011 — Bryophytes display allelopathic interactions with tree species in native forest ecosystems — Oikos, 120: 1272–1280.
  • [42] Molina-Montenegro M. A., Torres-Díaz C., Gianoli E. 2014 — Antarctic macrolichen modifies microclimate and facilitates vascular plants in the maritime Antarctica — a reply to Casanova-Katny et al. — J. Veg. Sci. 25: 606–608.
  • [43] Oliver M. J. 2009 — Biochemical and molecular mechanisms of desiccation tolerance in mosses (In: Mosses biology, Eds: B. Goffinet, A. J. Shaw) — Cambridge Univ. Press, pp. 269–297.
  • [44] Otsus M., Zobel M. 2004 — Moisture conditions and the presence of bryophytes determine fescue species abundance in a dry calcareous grassland — Oecol. 138: 293–299.
  • [45] Proctor M. C. F. 1982 — Physiological ecology: water relations, light, and temperature responses, carbon balance (In: Bryophyte ecol, Ed: A. J. E. Smith) — Chapman and Hall, London, pp. 333–382.
  • [46] Parker W. C., Watson S. R., Cairns D. W. 1997 — The role of hair-cap mosses (Polytrichum spp.) in natural regeneration of white spruce (Picea glauca (Moench) Voss) — Fore. Ecol. Manage. 92: 19–28.
  • [47] Pascale M., David J., Burritt William G. L. 2011 — Bryophytes display allelopathic interactions with tree species in native forest ecosystems — Oikos, 120: 1272–1280.
  • [48] Peng H. H., Zhao C. Y., Feng Z. D., Xu Z. L., Wang C., Zhao Y. 2014a —Canopy interception by a spruce forest in the upper reach of Heihe River basin, Northwestern China — Hydrol. Proc. 28: 1734–1741.
  • [49] Peng S. Z., Zhao C. Y., Xu Z. L. 2014b —. Modeling spatiotemporal patterns of understory light intensity using airborne laser scanner (LiDAR) — ISPRS J. Photog. Rem. Sens. 97: 195–203.
  • [50] Peng S. Z., Zhao C. Y., Xu Z.L. 2015 — Modeling stem volume growth of Qinghai spruce (Picea crassifolia Kom.) in Qilian Mountains of Northwest China — Scandinavian J. Fore. Res. 30: 449–457.
  • [51] Pfaff A. S. P. 1999 —What drives deforestation in the Brazilian Amazon?: Evidence from satellite and socioeconomic data — J. Envi. Economics and Management. 37: 26–43.
  • [52] Praful B., Godkar Richard K. G., Arippa R., Bhupendra P. D. 2004 — Celastrus paniculatus seed water soluble extracts protect against glutamate toxicity in neuronal cultures from rat forebrain — J. Ethnoph. 93: 213–219.
  • [53] Sarafis V. 1971 — A biological account of Polytrichum commune — N.Z.J. Bot. 9: 711–724.
  • [54] Sohlberg E. H., Bliss L. C. 1987 — Responses of Ranunculus sabinei and Papaver radicatum to removal of the moss layer in a high-arctic meadow — Can. J. Bot. 65: 1224–1228.
  • [55] Soudzilovskaia N. A., Graae B. J., Douma J. C., Grau O., Milbau A., Shevtsova A., Wolters L., Cornelissen J. H. C. 2011 — How do bryophytes govern generative recruitment of vascular plants — New Phytol. 190: 1019–1031.
  • [56] Špačková I., Kotorová I., Lepš J. 1998 — Sensitivity of seedling recruitment to moss, litter and dominant removal in an oligotrophic wet meadow — Folia Geob. 33: 17–30.
  • [57] Spasojevic M. J., Harrison S., Day H. W., Southard R. J. 2014 — Above- and belowground biotic interactions facilitate relocation of plants into cooler environments — Ecol. lett. 17: 700–709.
  • [58] Steijlen I., Nilsson M. C., Zackrisson O. 1995 — Seed regeneration of Scots pine in boreal forest stands dominated by lichen and feather moss — Can. J. Fore. Res. 25: 713–723.
  • [59] Tadesse M., Steiner U., Hindorf H., Dehne H. W. 2004 — Bryophyte extracts with activity against plant pathogenic fungi — SINET: Ethiopian J. Sci. 26: 55–62.
  • [60] Van Tooren B. F. 1988 — The fate of seeds after dispersal in chalk grassland: the role of the mosses layer — Oikos, 53: 41–48.
  • [61] Van Torne B. F., During H. J., Lensink M. J. G. 1985 — The influence of the bryophytes layer on the microclimate in chalk grasslands — Abstracta Bota. 9: 219–230.
  • [62] Wang C., Zhao Y., Wang Y., Peng H. H. 2013 — Effect of vegetation on soil water retention and storage in a semi—arid alpine forest catchment — J. Arid Land. 5: 207–219.
  • [63] Weir T. L., Park S. W., Vivanco J. M. 2004 — Biochemical and physiological mechanisms mediated by allelochemicals — Curr. Opin. plant biol. 7: 472—479.
  • [64] Xu Z. L., Zhao C. Y., Feng Z. D. 2012 — Species distribution models to estimate the deforested area of Picea crassifolia in arid region recently protected: Qilian Mts. National Natural Reserve (China) — Pol. J. Ecol. 60: 515–524.
  • [65] Yan J., He X. L., , Zhang Y. J., , Xu W., Zhang, J., Zhao, L. P. 2014 — Colonization of arbuscular mycorrhizal fungi and dark septate endophytes in roots of desert Salix psammophila — Chin. J. Plant. Ecol. 38: 949–958 (in Chinese, English summary).
  • [66] Zamfir M. 2000 — Effects of bryophytes and lichens on seedling emergence of alvar plants: evidence from greenhouse experiments — Oikos, 88: 603–61.
  • [67] Zhang P., Liu X. D., Zhang X. L., Zhao W. J., Jing W. M., Wang S. L. 2013 — Shrubbery eco-hydrological effect of forest-grass catchment of Qilian Mountains — Arid Land Geog. 36: 922–929 (in Chinese, English summary).
  • [68] Zhao C. Y., Nan Z. R., Cheng G. D., Zhang J. H., Feng Z. D. 2006 — GIS-assisted modeling of the spatial distribution of Qinghai spruce (Picea crassifolia) in the Qilian Mountains, northwestern China based on biophysical parameters — Ecol. Mode. 191: 487–500.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06039c59-dce4-4dfc-8f1b-0d70f83d7368
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.