PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low cycle fatigue studies of WCLV steel (1.2344) used for forging tools to work at higher temperatures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of low cycle fatigue studies of WCLV tool steel aimed at determining the diagrams of low cycle fatigue and verifying them based on the analysis of durability of the selected forging tool. Based on the macro- and microstructural tests as well as numerical modelling of industrial forging processes, the conditions for the implementation of laboratory fatigue tests were determined. The samples underwent periodical uniaxial loading (tension–compression conditions) at four levels of amplitude of total strain (0.5; 0.8; 1.0; 2.0%), at three temperatures (20, 300 and 600 °C), based on the macro- and microstructural tests as well as numerical modelling of industrial forging processes. For the determination of the hysteresis loop based on the obtained fatigue results, the Ramberg–Osgood equation was applied. The fatigue diagrams in the bilogarithmic system were approximated by the Manson–Coffin–Basquin equation, and the diagrams of low cycle fatigue in the ɛa–Nf and σa–Nf system were obtained. The results of the laboratory tests concerning the fatigue strength of WCLV tool steel were preliminarily verified based on the analysis of the punch used to forge a lid forging, exhibiting a good agreement. The performed comparative analysis of the results of the fatigue tests and the numerical analysis combined with the studies of the microstructure revealed the possibility of their application in the aspect of forging tools’ durability as well thermo-mechanical fatigue strength.
Rocznik
Strony
465--478
Opis fizyczny
Bibliogr. 52 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 25, 50-370 Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 25, 50-370 Wrocław, Poland
  • University of Science and Technology in Bydgoszcz, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • [1] P. Anders, S. Hogmark, J. Bergström, Simulation and evaluation of thermal fatigue cracking of hot work tool steels, Int. J. Fatigue 10 (2004) 1095–1107.
  • [2] Ch. Choi, A. Groseclose, T. Altan, Estimation of plastic deformation and abrasive wear in warm forging dies, J. Mater. Process. Technol. 212 (8) (2012) 1742–1752.
  • [3] G.A. Berti, M.M. Monti, Thermo-mechanical fatigue life assessment of hot forging die steel, Fatigue Fract. Eng. Mater. Struct. 28 (11) (2005) 1025–1034.
  • [4] Z. Gronostajski, M. Hawryluk, The main aspects of precision forging, Arch. Civ. Mech. Eng. 8 (2) (2008) 39–55.
  • [5] R. Lapovok, S. Smirnov, V. Shveykin, Damage mechanics for the fracture prediction of metal forming tools, Int. J. Fract. 103 (2) (2000) 111–126.
  • [6] L. Lavtar, T. Muhic, G. Kugler, M. Tercelj, Analysis of the main types of damage on a pair of industrial dies for hot forging car steering mechanisms, Eng. Fail. Anal. 18 (10) (2011) 1143– 1152.
  • [7] M. Hawryluk, Review of selected methods of increasing the life of forging tools in hot die forging processes, Arch. Civ. Mech. Eng. 16 (2016) 845–866.
  • [8] Z. Gronostajski, M. Hawryluk, et al., The application of the reverse 3D scanning method to evaluate the wear of forging tools divided on two selected areas, Int. J. Automot. Technol. 18 (4) (2017) 653–662.
  • [9] A. Mazurkiewicz, J. Smolik, The innovative directions in development and implementations of hybrid technologies in surface engineering, Arch. Metal. Mater. 60 (3) (2015) 2161–2172.
  • [10] Z. Gronostajski, et al., The failure mechanisms of hot forging dies, Mater. Sci. Eng. A 657 (2016) 147–160.
  • [11] Z. Gronostajski, M. Hawryluk, et al., Solution examples of selected issues related to die forging, Arch. Metal. Mater. 60 (4) (2015) 2767–2775.
  • [12] M. Hawryluk, M. Zwierzchowski, M. Marciniak, P. Sadowski, Phenomena and degradation mechanisms in the surface layer of die inserts used in the hot forging processes, Eng. Fail. Anal. 79 (2017) 313–329.
  • [13] A. Kocańda, Rozdział w monografii pt. Informatyka w Technologii Metali, red, in: A. Piela, F. Grosman, J. Kusiak, M. Pietrzyk (Eds.), Określenie trwałości narzędzia w obróbce plastycznej metali, Wydawnictwo Politechniki Śląskiej, Gliwice, 2003 213–256.
  • [14] W. Ramberg, W.R. Osgood, Description of Stress– Strain Curves by Three Parameters, NACA, Tech. Note 402, 1943.
  • [15] A. Kocańda, Optymalizacja trwałości narzędzi do objętościowej obróbki plastycznej z uwzględnieniem ryzyka wystąpienia pęknięć zmęczeniowych i niedopuszczalnego zużycie ściernego. Sprawozdanie z projektu badawczego KBN 7/T08C/050/15, 2001.
  • [16] S. Andrews, H. Sehitoglu, A computer model for fatigue crack growth from rough surfaces, Int. J. Fatigue 22 (7) (2000) 619–630.
  • [17] S.S. Manson, Behaviour of Materials under Conditions of Thermal Stress, NACA, Tech. Note 2933, 1953.
  • [18] S.S. Manson, G.R. Halford, Re-examination of cumulative fatigue damage analysis – an engineering perspective, Eng. Fract. Mech. 25 (5/6) (1986) 539–571.
  • [19] S. Mroziński, G. Golański, Low cycle fatigue and cyclic softening behaviour of martensitic cast steel, Eng. Fail. Anal. 2086 (2013) 692–702.
  • [20] Z. Zhanpinga, D. Delagnes, G. Bernhart, Cyclic behaviour and plastic strain memory effect of 55NiCrMoV7 steel under low cycle fatigue, Rare Metals 30 (2011) 443–451.
  • [21] W. Abuzaid, H. Sehitoglu, Functional fatigue of Ni50.3Ti25Hf24.7 – heterogeneities and evolution of local transformation strains, Mater. Sci. Eng. A (2017), http://dx.doi.org/10.1016/j. msea.2017.04.097.
  • [22] P. Chowdhury, H. Sehitoglu, R. Rateick, Recent advances in modeling fatigue cracks at microscale in the presence of high density coherent twin interfaces, Curr. Opin. Solid State Mater. Sci. (2016).
  • [23] P. Chowdhury, H. Sehitoglu, Mechanisms of fatigue crack growth – a critical digest of theoretical developments, Fatigue Fract. Eng. Mater. Struct. (2016).
  • [24] J.D. Carroll, W.Z. Abuzaid, J. Lambros, H. Sehitoglo, On the interactions between strain accumulation, microstructure, and fatigue crack behavior, Int. J. Fract. 180 (2) (2013) 223– 241.
  • [25] K. Gall, H. Sehitoglu, Y. Kadioglu, Plastic zones and fatigue crack closure under plane-strain double slip, Metal. Trans. 27 (11) (1996) 3491–3502.
  • [26] H. Sehitoglu, M. Karayaka, Prediction of thermomechanical fatigue lives in metal matrix composites, Metal. Trans. 23A (1992) 2038–2209.
  • [27] A. Fatemi, L. Yang, Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials, Int. J. Fatigue 20 (1) (1998) 9–34.
  • [28] A. Nagesha, M. Valsan, et al., Influence of temperature on the low cycle fatigue behaviour of a modified 9Cr–1Mo ferritic steel, Int. J. Fatigue 24 (2002) 1285–1293.
  • [29] T. Beck, P. Hahner, H.-J. Kuhn, C. Rae, E.E. Affeldt, H. Andersson, A. Koster, M. Marchionni, Thermo-mechanical fatigue – the route to standardisation (‘‘TMF-Standard’’ project) 57 (1) (2006) 53–59.
  • [30] C. Bathias, A. Pineau, Fatigue of Materials and Structures: Application to Design, John Wiley & Sons, 2013. p. 49.
  • [31] J. Bressers, L. Rémy, Fatigue under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modelling, Springer, The Netherlands, 1996, http://dx.doi.org/10.1007/978-94-015- 8636-8.
  • [32] L. Remy, J. Petit, Temperature–Fatigue Interaction, Elsevier, 2002.
  • [33] M.A. McGaw, S. Kalluri, J. Bressers, S.D. Peteves, Thermomechanical Fatigue Behavior of Materials, Fourth volume, ASTM International, 2003.
  • [34] M. Knorr, Auslegung von Massivumformwerkzeugen gegen Versagen durch Ermudung. Berichte aus dem Institut fur Umformtechnik, Universitat Stuttgard 124, Springer-Verlag, 1996.
  • [35] A. Kocańda, Die steel for warm working – an evaluation of resistance to cyclic loading, in: Proc. 3rd Int. Conf. on Technology of Plasticity, vol. I, Kyoto, (1990) 349–354.
  • [36] A. Kocańda, Evolution of damage in hardened high speed tool steel subjected to cyclic deformation at elevated temperatures, in: Proc. Int. Conf. Metal Forming '89, Cracov, (1989) 39–44.
  • [37] A. Kocańda, Niskocykliczne zmęczenie stali SW7M o wysokiej twardości, Archiwum Hutnictwa 24 (4) (1979) 489–499.
  • [38] A. Kocańda, Some aspects of die deformation in net-shape cold forging, in: Proc. 4th ICTP Advanced Technology of Plasticity, Columbus, (1996) 367–370.
  • [39] A. Kocańda, M. Głowacki, Oddziaływanie karbu przy wysokich obciążeniach cyklicznych, Przegląd Mechaniczny 38 (11) (1979) 14–18.
  • [40] S. Kocańda, A. Kocańda, Niskocyklowa wytrzymałość zmęczeniowa metali, PWN, Warszawa, 1989.
  • [41] U. Wiklund, J. Gunnars, S. Hogmark, Influence of residual stresses on fracture and delamination of thin hard coatings, Wear 232 (1999) 262–269.
  • [42] Ch. Hinsel, Advanced surface and coating technologies for improved tool life in cold forging, in: Proc. 31st Plenary Meeting of the ICFG, Gothenburg, 1998.
  • [43] B. Kurth, H. Bomas, P. Mayr, Fatigue properties of steel coated with TiN by a PVD process, in: P. Mayr (Ed.), Surface Engineering, DGM, Oberursel, 1993 147–152.
  • [44] K. Shiozawa, T. Tomosawa, L. Han, K. Motobayashi, Effect of flows in coating film on fatigue strength of steel coated with titanium nitride, JSME Int. J. A 39 (1) (1996) 142–150.
  • [45] A. Kocańda, Analysis of LCF behavior of TIN coated tool steel for cold forging. Advanced technology of plasticity, in: Proceedings of the 7th ICTP, vol. 1, Yokohama, October, (2002) 793–798.
  • [46] A. Kocańda, Problem of tool life in cold forging, in: K. Świątkowski (Ed.), Metallurgy on the Turn of 20th Century, Polska Akademia Nauk, Akapit, Kraków, 2002 347–368.
  • [47] S. Mrozinski, J. Szala, Zagadnienie cyklicznego umocnienia lub oslabienia metali w warunkach obciazenia programowanego, Acta Mech. Automat. 5 (3) (2011).
  • [48] L.F. Coffin, A study of the effects of cyclic thermal stresses on a ductile metal, Trans. ASME 76 (1954) 931–950.
  • [49] ASTM E606-04, Standard Practice for Strain-Controlled Fatigue Testing, 2017.
  • [50] M.M. Hawryluk, et al., Analysis of the wear of forging tools surface layer after hybrid surface treatment, Int. J. Mach. Tools Manuf. 114 (2017) 60–71.
  • [51] M. Hawryluk, et al., Application of selected surface engineering methods to improve the durability of tools used in precision forging, Int. J. Adv. Manuf. Technol. (2017), http://dx.doi.org/10.1007/s00170-017-0677-3.
  • [52] M. Hawryluk, et al. Analiza wpływu wybranych zjawisk niszczących na trwałość matryc kuźniczych, Vol. 12, Raporty Wydziału Mechanicznego Politechniki Wrocławskiej SPR, 2014.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06029ec7-543b-4221-a740-1d892071b01c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.