PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unbiased Total Electron Content (UTEC), their Fluctuations, and Correlation with Seismic Activity over Japan

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Earthquakes are among the most dangerous events that occur on earth and many scientists have been investigating the underlying processes that take place before earthquakes occur. These investigations are fueling efforts towards developing both single and multiple parameter earthquake forecasting methods based on earthquake precursors. One potential earthquake precursor parameter that has received significant attention within the last few years is the ionospheric total electron content (TEC). Despite its growing popularity as an earthquake precursor, TEC has been under great scrutiny because of the underlying biases associated with the process of acquiring and processing TEC data. Future work in the field will need to demonstrate our ability to acquire TEC data with the least amount of biases possible thereby preserving the integrity of the data. This paper describes a process for removing biases using raw TEC data from the standard Rinex files obtained from any global positioning satellites system. The process is based on developing an unbiased TEC (UTEC) data and model that can be more adaptable to serving as a precursor signal for earthquake forecasting. The model was used during the days and hours leading to the earthquake off the coast of Tohoku, Japan on March 11, 2011 with interesting results. The model takes advantage of the large amount of data available from the GPS Earth Observation Network of Japan to display near real-time UTEC data as the earthquake approaches and for a period of time after the earthquake occurred.
Czasopismo
Rocznik
Strony
51--70
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • Science and Technology Division Chair, Eastern Nazarene College, Quincy, USA
autor
  • Department of Physics and Engineering, Chair, Eastern Nazarene College, Quincy, USA
Bibliografia
  • 1. Astafyeva E, Afraimovich EL (2004) Long-distance traveling ionospheric disturbances caused by the great Sumatra-Andaman earthquake on 26 December 2004, Institute of Solar-Terrestrial Physics SD RAS, P. O. Box 4026, Irkutsk, 664033, Russia
  • 2. Astafyeva E, Heki K, Kiryushkin V, Afraimovich E, Shalimov S (2009) Two-mode long-distance propagation of coseismic ionosphere disturbances. J Geophys Res 114(A10307):2009. https://doi.org/10.1029/2008JA013853
  • 3. Chakrabarty D, Bagiya M, Thanpi S, Iyer KN (2012) Solar EUV flux (0.1–50 nm), F10.7 cm flux, sunspot number and the total electron content in the crest region of equatorial ionization anomaly during the deep minimum between solar cycle 23 and 24. Indian J Radio Space Phys 41:110–120
  • 4. Choosakul N, Saito A, Iyemori T, Hashizume M (2009) Excitation of 4-min periodic ionospheric variations following the great Sumatra-Andaman earthquake in 2004. J Geophys Res 114:A10313. https://doi.org/10.1029/2008ja013915
  • 5. Cornely P-RJ (2003) Flexible prior models: three-dimensional ionospheric tomography. Radio Sci. 38:1087. https://doi.org/10.1029/2002rs002703
  • 6. Cornely P-R, Daniell R (2013) Anomalies in the Ionosphere around the Southern Faults of Haiti near the 2010 Earthquake. Natural Hazards NH13A-1589-2013, American Geophysical Union, December 2013
  • 7. Freund F (2010) Toward a unified solid state theory for pre-earthquake signals. Acta Geophys 58:719–766
  • 8. Freund F (2011) Pre-earthquake signals: underlying physical processes. J Asian Earth Sci 41:383–400
  • 9. Freund F, Takeuchi A, Lau BWS (2006) Electric currents streaming out of stressed igneous rocks: a step towards understanding pre-earthquake low frequency EM emissions. Phys Chem Earth 31:389–396
  • 10. Hammerstrom J, Cornely P-R (2016) Total electron content (TEC) variations and correlation with seismic activity over Japan. J Young Investig (JYI) 3. https://doi.org/10.22186/jyi.31.4.13-16
  • 11. Hasbi AM, Momani MA, Ali MAM, Misran N, Shiokawa K, Otsuka Y, Yumoto K (2009) Ionospheric and geomagnetic disturbances during the 2005 Sumatra earthquake. J Atmos Solar Terr Phys 71:1992–2005
  • 12. Hayakawa M, Fujinawa Y (1994) Electromagnetic phenomena related to earthquake predication. Terra Sci. Pub. Co., Tokyo
  • 13. Hayakawa M, Molchanov OA (eds) (2002) Seismo electromagnetics: lithosphere-atmosphere-ionosphere coupling. Terra Sci Pub. Co., Tokyo
  • 14. Heki K (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophys Res Lett. https://doi.org/10.1029/2011gl047908
  • 15. Heki K, Enomoto Y (2013) Preseismic ionospheric electron enhancements revisited. J Geophys Res Space Phys 118:6618–6626. https://doi.org/10.1002/jgra.50578CrossRefGoogle Scholar
  • 16. Ho Y-Y, Liu J-Y, Parrot M, Pinçon J-L (2013) Temporal and spatial analyses on seismo-electric anomalies associated with the 27 February 2010 M = 8.8 Chile earthquake observed by DEMETER satellite. Natl Hazards Earth Syst Sci. 13:3281–3289. https://doi.org/10.5194/nhess-13-3281-2013. http://www.nat-hazards-earth-syst-sci.net/13/3281/2013
  • 17. Jin R, Jin S, Feng G (2012a) M_DCB: Matlab code for estimating GNSS satellite and receiver differential code biases. GPS Solut 16:541–548. https://doi.org/10.1007/s10291-012-0279-3 (Received: 19 April 2012/Accepted: 30 June 2012/Published online: 18 July 2012)
  • 18. Jin R, Jin S, Feng G (2012b) M_DCB: Matlab code for estimating GNSS satellite and receiver differential code biases. GPS Solut. 16:541–548. https://doi.org/10.1007/s10291-012-0279-3
  • 19. Jin S, Occhipinti G, Jin R (2015) GNSS ionospheric seismology: recent observation evidencesand characteristics. Earth Sci Rev 147(2015):54–64
  • 20. Kahinami Y, Kamogawa M, Tanioka Y, Watanabe S, Gusman AR, Liu J-Y, Watanabe Y, Mogi T (2012) Tsunamigenic ionospheric hole. Geophys. Res. Lett 39:L00G27. https://doi.org/10.1029/2011gl050159
  • 21. Kamogawa M, Kakinami Y (2013) Is an ionospheric electron enhancement preceeding the 2011 Tohoku-Oki earthquake a precursor. J Geophys Res Space Phys 118:1751–1754. https://doi.org/10.1002/jgra.50118
  • 22. Karato S-I (1999) Seismic anisotropy of the Earth’s inner core resulting from flow induced by Maxwell stresses. Nature 402:871–873. https://doi.org/10.1038/47235
  • 23. Kennett BLN, Engdahl ER (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 105:429–465
  • 24. Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the earth from traveltimes. Geophys J Int 122:108–124
  • 25. Liu JY, Tsai YB, Chen SW, Lee CP, Chen YC, Yen HY, Chang WY, Liu C (2006a) Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004. Geophys Res Lett 33:L02103. https://doi.org/10.1029/2005GL023963
  • 26. Liu JY, Tsai YB, Ma KF, Chen YI, Tsai HF, Lin CH, Kamogawa M, Lee CP (2006b) Ionospheric GPS total electron content (TEC) disturbances triggered by the 26 December 2004 Indian Ocean tsunami. J Geophys Res 111:A05303. https://doi.org/10.1029/2005JA011200
  • 27. Liu JY, Tsai HF, Lin CH, Kamogawa M, Chen YI, Lin CH, Huang BS, Yu SB, Yeh YH (2010) Coseismic ionospheric disturbances triggered by the Chi‐Chi earthquake. J Geophys Res 115:A08303. https://doi.org/10.1029/2009JA014943
  • 28. Ma G, Maruyama T (2003) Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Ann Geophys 21:2083–2093 (c European Geosciences Union 2003, April 2003)
  • 29. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582
  • 30. Masci F, Thomas JN, Villani F, Secan JA, Rivera N (2014) On the onset of ionospheric precursors 40 min before strong earthquakes. J Geophys Res Space Phys 120:1383–1393. https://doi.org/10.1002/2014/ja020822
  • 31. Ng KK (2016) Prediction methods in solar sunspots cycles. Sci Rep 6:21028. https://doi.org/10.1038/srep21028
  • 32. O’Brien M, Cornely P-R (2015) Analyzing Anomalies in the Ionosphere Above Haiti Surrounding the 2010 Earthquake. J Young Investig
  • 33. Ohl AI (1966) Wolfs number prediction for the maximum of the cycle 20. Soln Dannye 12:84
  • 34. Otsuka Y, Ogawa T, Saito A, Tsugawa T, Fukao S, Miyazaki S (2002) A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space 54:63–70
  • 35. Oyama K-I, Kakinami Y, Liu JY, Abdu MA, Cheng CZ (2011) Latitudinal distribution of anomalous ion density as a precursor of a large earthquake. J Geophys Res 116:A04319. https://doi.org/10.1029/2010JA015948
  • 36. Parrot M, Tramutoli V, Liu TJY, Pulinets S, Ouzounov D, Genzano N, Lisi M, Hattori K, Namgaladze A (2016) Atmospheric and ionospheric coupling phenomena related to large earthquakes. Nat Hazards Earth Syst Sci. https://doi.org/10.5194/nhess-2016-172(Published: 23 June 2016)
  • 37. Poupinet G, Pillet R, Souriau A (1983) Possible heterogeneity of the Earth’s core deduced from PKIKP travel times. Nature 305:204–206
  • 38. Pulinets SA, Liu JY (2004) Ionospheric variability unrelated to solar and geomagnetic activity. Adv Space Res 34:1926–1933
  • 39. Pulinets SA, Gaivoronskaya TV, Leiva Contreras A, Ciraolo L (2004) Correlation analysis technique revealing ionosphere precursors of earthquakes. Nat Hazards Earth Syst Sci 4:697–702
  • 40. Russell CT, Lugmann JG, Jian LK (2010) How an unprecedented a solar minimum? Rev Geophys 48:RG2004. https://doi.org/10.1029/2009rg000316
  • 41. Simon SJ, Zharkov SI, Zharkova VV (2014) Prediction of solar activity from solar background magnetic field variations in cycles 21–23. Astrophys J 795:46
  • 42. Song X, Helmberger DVA (1995) P wave velocity model of Earth’s core. J Geophys Res 100:9817–9830
  • 43. Song Q, Ding F, Yu T et al (2015) GPS detection of the coseismic ionospheric disturbances following the 12 May 2008 M7.9 Wenchuan earthquake in China. Sci China Earth Sci 58:151–158. https://doi.org/10.1007/s11430-014-5000-7
  • 44. Souriau A, Poupinet G (1991) The velocity profile at the base of the liquid core from PKP(BC + Cdiff) data: an argument in favor of radial inhomogeneity. Geophys Res Lett 18:2023–2026
  • 45. Souriau A, Roudil P (1995) Attenuation in the uppermost inner core from broad-band GEOSCOPE PKP data. Geophys J Int 123:572–587
  • 46. Yu W-C, Wen L, Niu F (2005) Seismic velocity structure in the earth’s outer core. J Geophys Res 110:B02302. https://doi.org/10.1029/2003jb002928
  • 47. Zou Z, Koper KD, Cormier VF (2008) The structure of the base of the outer core inferred from seismic waves diffracted around the inner core. J Geophys Res 113:B05314.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06023585-01ef-4d9b-bfc5-1e9fa0fc854f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.