PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical characterization of synclinal spring water of Taoura, region of Souk Ahras – North East Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The springs of the Taoura region flow from a syncline shaped structure. All resources in the region were mobilized as a result of increased demand. However, the development of anthropic activities and population growth in the area pose risk for groundwater. Analytical results obtained from a series of samplings in November 2017–April 2018, express the quality of water suitable for the irrigation of agricultural land. The highest values are recorded in April 2018 at 20.5 to 21.6°C and pH of 8.0 to 8.2. The study recorded high electrical conductivity from 1390 to 1495 μS∙cm–1 and TDS from 1270 to 1500 mg∙dm–3 in November 2017, which shows important mineralization that characterizes spring water. Physical parameters were measured in situ using a HORIBA multi-parameter probe. Chemical analyses were carried out using NFT 90-005 titration, and nitrogen parameters by DIN 38405-D92 spectrophotometry. Maximum levels of nitrates and phosphates were recorded at 228 and 18.4 mg∙dm–3 respectively. The principal component analysis (PCA) showed a good correlation of the November 2017 period with mineralization parameters. Moreover, there is a strong correlation between the wet period and pollution factors. The two methods of analysis has allowed to distinguish three groups of geochemical water types: a bicarbonate calcium group typical for waters having transited in carbonate horizons. A second chloride calcium group shows basic exchange between water and clay levels, and the third chloride bicarbonate calcium group reveals an enrichment in calcium and chloride, which reflects water circulation with an exchange of the carbonated and evaporitic sedimentary rock matrix.
Wydawca
Rocznik
Tom
Strony
27--37
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Badji Mokhtar Annaba University, Department of Geology, Geological Researches Laboratory, 17 Hassen Chaouche, Annaba, 23000, Algeria
  • Badji Mokhtar Annaba University, Department of Geology, Geological Researches Laboratory, 17 Hassen Chaouche, Annaba, 23000, Algeria
Bibliografia
  • ABRID D. 2015. Caractérisation physico-chimique, minéralogique et géochimique des sédiments de retenue du barrage Sidi Chahed et des sols du bassin versant de l’oued Mikkés [Physico-chemical, mineralogical and geochemical characterization of the sediments of the Sidi Chahed dam and the soils of the Mikkés wadi watershed]. PhD Thesis. University of Moulaya Ismail, Morocco pp. 233.
  • ALAM M., RAIS S., ASLAN M. 2012. Hydrochemical investigation and quality assessment of groundwater in rural areas of Delhi, India. Environmental Earth Sciences. Vol. 66(1) p. 97–110. DOI 10.1007/s12665-011-1210-x.
  • AUDOIN L. 1991. Rôle de l'azote et du phosphore dans la pollution animale [Role of nitrogen and phosphorus in animal pollution]. Revue scientifique et technique (International Office of Epizootics). Vol. 10(3) p. 629–654.
  • BENABBAS C. 2006. Evolution Mio-Plio-Quaternaire des bassins continentaux de l’Algérie Nord orientale: Apport de la photo-géologie et analyse morpho structurale [Evolution Mio-Plio-Quaternaire of the continental basins of North-Eastern Algeria: Contribution of photo-geology and structural morpho analysis]. PhD Thesis. University of Constantine pp. 255.
  • BOUSNOUBRA H. 2002. Ressources en eaux des régions de Skikda- Annaba-Tarf-Guelma-Souk Ahras (Nord Est Algérien). Evaluation, gestion et perspective. Vulnérabilité et protection) [Water resources of the regions of Skikda, Annaba, El Tarf, Guelma, Souk-Ahras (N – E Algerian). Evaluation, management and perspective. Vulnerability and protection). PhD Thesis. Badji Mokhtar Annaba University pp. 159.
  • BRAHIMI A., CHAFI A. 2014. Etude écotoxicologique de l’oued Za et de son affluent Oued Tizeghrane (Basse Moulouya, Maroc Oriental) [Ecotoxicological study of Oued Za and its tributary Oued Tizeghrane (Lower Moulouya, Eastern Morocco)]. Journal of Materials and Environmental Science. Vol. 5(5) p. 1671–1682.
  • CHADI M. 2004. Cadre géologique et structural des séries crétacées néritiques du constantinois (Est Algérien) [Geological and structural framework of the Cretaceous Neritic series of the Constantinois (East Algerian)]. PhD Thesis. University of Constantine pp. 219.
  • CHAHBOUNE M., CHAHLAOUI A., ZAID A., MEHANNED S., BEN MOUSSA A. 2014. Monitoring of the water’s quality of Moulouya River: Main tributary of Hassan II Dam (Province of Midelt, Morocco). Moroccan Journal of Chemistry. Vol. 2(5) p. 427–433. DOI 10.48317/IMIST.PRSM/morjchem-v2i5.2413.
  • CHAPMAN D.V. (ed.) 1996. Water quality assessments: A guide of the use of biota, sediments and water in environmental monitoring. London, New York. Taylor & Francis. UNESCO/WHO/UNEP. ISBN 0-419-21590-5 pp. 648.
  • COMLY H.H. 1945. Cyanosis in infants caused by nitrates in well water. Journal of the American Medical Association. Vol. 129(2) p. 112– 116. DOI 10.1001/jama.1945.02860360014004.
  • DERWICH E., BENAABIDATE L., ZIAN A., SADKI O., BELGHITY D. 2013. Caractérisation physico-chimique des eaux de la nappe alluviale du Haut Sebou en aval de sa confluence avec oued Fès [Physico- chemical characterization of the waters of the alluvial ground-water of Haut Sebou downstream of its confluence with Wadi Fes]. Larhyss Journal. No. 08 p. 101–112.
  • DIN 38405-D92. German standard methods for examination of water, waste water and sludge – Anions (group D) – Part 9: Spectro-metric determination of nitrate (D 9).
  • DJABA H. 2010. Ressources en eau et perspectives de gestion intégrée dans le bassin versant de Medjerda (Souk-Ahras, Nord-Est d’Algérie) [Water resources and prospects for integrated management in the Medjerda river basin (Souk-Ahras, North-East Algeria)]. Msc Thesis. Université Badji Mokhtar Annaba pp. 150.
  • ERCIN A.E., HOEKSTRA A.Y. 2014. Water footprint scenarios for 2050: A global analysis. Environmental International. Vol. 64 p. 71–82. DOI 10.1016/j.envint.2013.11.019.
  • FRIANE F. 2000. Ressources et approvisionnement en eau dans la région de Souk-Ahras (Essai de Thèse) [Water resources and supply in the Souk-Ahras Region (Thesis Essay). [Dissertation in hydro-geology engineering]. University of Badji Mokhtar Annaba pp. 82.
  • GILLY G., CORRAO G., FAVILLI S. 1984. Concentrations of nitrates in drinking water and incidence of gastric carcinomas, first descriptive study of the Piemonate region, Italy. Science of The Total Environment. Vol. 34. Iss. 1–2 p. 35–48. DOI 10.1016/ 0048-9697(84)90039-1.
  • KHADRI S. 2009. Qualité des eaux de la vallée de la Seybouse dans sa partie aval: Impacts des néofacteurs de pollution [Water quality in the downstream part of the Seybouse valley: Impacts of neo-pollution factors]. Msc Thesis. University of Badji Mokhtar Annaba pp. 134.
  • LACAZE J.C. 1996. L’eutrophisation des eaux marines et continentales [Eutrophication of marine and continental waters]. Paris. Ellipses. ISBN 2-7298-46700 pp. 192.
  • LARABA A., BENHAMZA M., KHADRI S., 2013. Qualité des eaux de l’oued Seybouse, région de Guelma (Nord est Algérien) [Water quality of the Seybouse wadi, Guelma region (North East Algeria). [Le deuxième Séminaire International sur l’Industrie Minérale et l’Environnement (2SIMINE13). The second International Seminar on Mineral Industry and Environment (2SIMINE13)] [Badji Mokhtar Annaba University]. [19–20.11.2013 Annaba].
  • MISHRA A.K., SINGH V.P. 2010. A review of drought concepts. Journal of Hydrology. Vol. 391 p. 202–216. DOI 10.1016/j.jhydrol .2010.07.012.
  • NFT 90 005 : 1985 Qualité de l'eau – dosage du calcium et du magnésium – méthode par spectrométrie d'absorption atomique [Water quality – calcium and magnesium determination – atomic absorption spectrometry method].
  • NICKSON R.T., MCARTHUR J.M., SHRESTHA B., KYAW-MYINT T.O., LOWRY D. 2005. Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Applied Geochemistry. Vol. 20. Iss. 1 p. 55–68. DOI 10.1016/j.apgeochem.2004.06.004.
  • NOUAYTI N., KHATTACH D., HILAL M. 2015. Evaluation de la qualité physico-chimique des eaux souterraines des nappes du Jurassique du haut bassin de Ziz (Haut Atlas central, Maroc) [Assessment of physico-chemical quality of groundwaterof the Jurassic aquifers inhigh basin of Ziz (Central High Atlas, Morocco)]. Journal of Materials and Environmental Science. Vol. 6(4) p. 1068–1081.
  • PAHL-WOSTL C., PALMER M. RICHARDS K. 2013. Enhancing water security for the benefits of humans and nature – The role of governance. Current Opinion in Environmental Sustainability. Vol. 5. Iss. 6 p. 676–684. DOI 10.1016/j.cosust.2013.10.018.
  • RAJENDRAN A., MANSIYA C. 2015. Physico-chemical analysis of ground-water samples of coastal areas of south Chennai in the post – Tsunami scenario. Ecotoxicology and Environmental Safety. Vol. 121 p. 218–222. DOI 10.1016/j.ecoenv.2015.03.037.
  • RAO M.S., KRISHAN G., KUMAR C.P., PURUSHOTHAMAN P., KUMAR S. 2017. Observing changes in groundwater resource using hydro-chemical and isotopic parameters: A case study from Bist Doab, Punjab. Environmental Earth Sciences. Vol. 76, 175. DOI 10.1007/s12665-017-6492-1.
  • SCHOELLER H. 1962. Les eaux souterraines, hydrologic dynamique et evaluation des resources [Groundwater, hydrological dynamics and resource assessment]. Paris. Masson pp. 642.
  • SELVAKUMAR S., RAMKUMAR K., CHANDRASEKAR N., MAGESH N., KALIRAJ S. 2017. Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India. Applied Water Science. Vol. 7 p. 411–420. DOI 10.1007/s13201-014-0256-9.
  • TALLAKSEN L.M., VAN LANEN H.A. (eds.) 2004. Hydrological drought: Processes and estimation methods for streamflow and ground-water. Developments in Water Science. Vol. 48. Elsevier. ISBN 978-0444517678 pp. 579.
  • TOUMI A. REGGAM A., ALAYAT H., HOUHAMDI M., 2016. Physico-chemical characterization of waters of the lake ecosystem: Case of Lake of Birds (Far NE-Algerian). Journal of Materials and Environmental Science. Vol. 7(1) p. 139–147.
  • TRAN N.H., GIN K.Y.H., NGO H.H. 2015. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and ground-water. Science of The Total Environment. Vol. 538 p. 38–57. DOI 10.1016/j.scitotenv.2015.07.155.
  • VAROL S., DAVRAZ A. 2015. Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: A case study of the Tefenni plain (Burdur/Turkey). Environmental Earth Sciences. Vol. 73 p. 1725–1744. DOI 10.1007/s12665-014- 3531-z.
  • VOROSMARTY C.J., GREEN P., SALISBURY J., LAMMERS R.B. 2000. Global water resources: Vulnerability from climate change and population growth. Science. Vol. 298 p. 284–288. DOI 10.1126/ science.289.5477.284.
  • WANG B., LIU W., ZHANG Y., WANG A. 2020. Bioenergy recovery from wastewater accelerated by solar power: intermittent electro-driving regulation and capacitive storage in biomass. Water Research. Vol. 175, 115696. DOI 10.1016/j.watres.2020.115696.
  • WHEATER H.S., GOBER P. 2015. Water security and the science agenda. Water Resources Research. Vol. 51(7) p. 5406–5424. DOI 10.1002/2015WR016892.
  • WHITE D., LAPWORTH D., STUART M., WILLIAMS P. 2016. Hydrochemical profiles in urban groundwater systems: New insights into contaminant sources and pathways in the subsurface from legacy and emerging contaminants. Science of the Total Environment. Vol. 562 p. 962–973. DOI 10.1016/j.scitotenv.2016.04.054.
  • WHO 2011. Guidelines for drinking – water quality. 4th ed. World Health Organization. ISBN 978-92-4-154815-1 pp. 631.
  • WILHITE D.A. 2000. Drought as a natural hazard: Concepts and definitions. In: Drought: A global assessment. Ed. D.A. Wilhite. Vol. 1. Routledge p. 3–18.
  • YANG Q., WANG L., MA H., YU K., MARTIN J.D. 2016. Hydrochemical characterization and pollution sources identification of ground-water in Salawusu aquifer system of Ordos Basin, China. Environmental Pollution. Vol. 216 p. 340–349. DOI 10.1016/j. envpol.2016.05.076.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0601113a-4dbb-4480-a747-054677c5bd9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.