Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, Nd2Ni1-xCuxO4+δ (x=0, 0.05, 0.1, and 0.2) layered perovskite powders were synthesized by the glycine nitrate process (GNP) and the chromium poisoning effect on the electrochemical performance of the Nd2Ni0.95Cu0.05O4+δ and La0.6Sr0.4Co0.2Fe0.88O3-δ cathodes were investigated. In the case of the LSCF cathode, the strontium chromite phase formed after the exposure of the gaseous chromium species, while there was no additional phase in the Nd2Ni0.95Cu0.05O4+δ cathode. The area specific resistance (ASR) of the Nd2Ni0.95Cu0.05O4+δ cathode did not change significantly after the exposure of the gaseous chromium species at 800°C
Wydawca
Czasopismo
Rocznik
Tom
Strony
629--634
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Department of Materials Science and Engineering, Inha University, Incheon, Korea
autor
- Department of Materials Science and Engineering, Inha University, Incheon, Korea
autor
- Department of Materials Science and Engineering, Inha University, Incheon, Korea
Bibliografia
- [1] J. Huijsmans, F. Van Berkel, G. Christie, J.Power Sources. 71, 107-110 (1998).
- [2] N. Q. Minh, Solid State Ionics. 174, 271-277 (2004).
- [3] C. Lalanne, F. Mauvy, E. Siebert, M. Fontaine, J. Bassat, F .Ansart, et al, Journal of the European Ceramic Society. 27, 4195-4198 (2007).
- [4] J. M. Ralph, C. Rossignol, R. Kumar, J.Electrochem Soc. 150, A1518-A1522 (2003).
- [5] A. Atkinson, S. Barnett, R. J. Gorte, J. Irvine, A. J. McEvoy, M Mogensen, et al, Nature materials. 3, 17-27 (2004).
- [6] H. Zhao, F. Mauvy, C. Lalann, J. Bassat, S. Fourcade, J. Grenier, Solid State Ionics. 179, 2000-2005 (2008).
- [7] K. Murata, T. Fukui, H. Abe, M. Naito, K. Nogi, J.Power Sources. 145, 257-261 (2005).
- [8] S. P. Jiang, S. Zhang, Y. Zhen, J.Electrochem.Soc. 153, A127-A134 (2006).
- [9] B. Fan, J. Yan, X. Yan, Solid State Sciences. 13, 1835-1839 (2011).
- [10] M. C. Tucker, H. Kurokawa, C. P. Jacobson, L. C De Jonghe, S. J. Visco, J.Power Sources. 160, 130-138 (2006).
- [11] Y. Wang, H. Nie, S. Wang, T. Wen, U. Guth, V. Valshook, Mater Lett. 60, 1174-1178 (2006).
- [12] V. V. Kharton, A. V. Kovalevsky, M. Avdeev, E. V. Tsipis, M. V. Patrakeev, A. A. Yaremchenko, et al, Chemistry of materials. 19, 2027-2033 (2007).
- [13] A. Egger, W. Sitte, F. Klauser, E. Bertel, J.Electrochem Soc. 157, B1537-B1541 (2010).
- [14] L. A. Chick, L. Pederson, G. Maupin, J. Bates, L. Thomas, G. Exarhos, Mater Lett 10 6-12 (1990).
- [15] M. Soorie, S.J. Skinner, Solid State Ionics. 177, 2081-2086 (2006).
- [16] J. Kim, E. Kvam, Physica C: Superconductivity. 292, 203-210 (1997).
- [17] F. Meng, T. Xia, J. Wang, Z. Shi, J. Lian, H. Zhao, et al, Int J Hydrogen Energy. 39, 4531-4543 (2014).
- [18] B. Wang, G. Long, Y. Ji, M. Pang, X. Meng, J.Alloys Compounds. 606, 92-96 (2014).
- [19] M. Finsterbusch, A Lussier, E Negusse, Z Zhu, RJ Smith, JA Schaefer, et al, Solid State Ionics. 181, 640-645 (2010).
- [20] M. Yang, E. Bucher, W. Sitte, J.Power Sources. 196, 7313-7317 (2011).
- [21] J. Andreas Schuler, H. Lübbe, A. Hessler-Wyser, J. Van herle, J.Power Sources. 213, 223-228 (2012).
- [22] M. K. Stodolny, B. A. Boukamp, DHA Blank, FPF van Berkel, J.Power Sources. 196, 9290-9298 (2011).
- [23] G. Y. Lau, M. C. Tucker, C. P. Jacobson, S. J. Visco, S. H. Gleixner, L. C. DeJonghe, J.Power Sources. 195, 7540-7547 (2010).
- [24] S. P. Jiang, X. Chen, Int J Hydrogen Energy. 39, 505-531 (2014).
- [25] E. Konysheva, H. Penkalla, E. Wessel, J. Mertens, U. Seeling, L. Singheiser, et al, J.Electrochem Soc. 153, A765-A773 (2006).
- [26] A. Khandale, S. Bhoga, R. Kumar, Solid State Ionics. 238, 1-6 (2013).
- [27] A. Aguadero, J. Alonso, M. Escudero, L. Daza, Solid State Ionics. 179, 393-400 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-060080aa-203c-4230-a192-40681074143e