Tytuł artykułu
Identyfikatory
Warianty tytułu
Catalytic pyrolysis of biomass supported by microwave radiation
Języki publikacji
Abstrakty
Piroliza mikrofalowa biomasy jest formą konwersji termicznej, która wykorzystuje mikrofale do podgrzewania biomasy, takiej jak odpady drzewne, rolne lub odpady z przemysłu spożywczego, do wysokich temperatur bez obecności tlenu. Powoduje to rozkład biomasy na szereg użytecznych związków w postaci biooleju, biowęgla i biogazu. Katalizatory odgrywają kluczową rolę w procesie pirolizy mikrofalowej biomasy, metody przekształcania materii organicznej w użyteczne związki, takie jak biopaliwa i chemikalia. Zastosowanie katalizatorów w tym procesie może znacznie poprawić wydajność, a także jakość uzyskanych produktów. Niniejsza praca jest przeglądem literaturowym obejmującym 30 prac z zakresu tego interesującego zagadnienia
Microwave pyrolysis of biomass is a form of thermal conversion that uses microwaves to heat biomass, such as wood waste, agricultural waste or food industry waste, to high temperature in the absence of oxygen. This breaks down the the biomass into a number of useful compounds in the form of bio—oil, biochar and biogas. Catalysts play a key role in the process of microwave pyrolysis of biomass, a method of converting organic matter into useful compounds such as biofuels and chemicals. The use of catalysts in this process can significantly improve the efficiency as well as well the quality of the obtained products. This work is a literature review covering 30 works on this interesting issue.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
74--79
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- Uniwersytet Jagielloński
autor
- Instytut Nafty i Gazu - Państwowy Instytut Badawczy w Krakowie
autor
- Instytut Nafty i Gazu - Państwowy Instytut Badawczy w Krakowie
autor
- Instytut Nafty i Gazu - Państwowy Instytut Badawczy w Krakowie
Bibliografia
- [1] Kozak M., „Analiza składu pierwiastkowego biowegla z wykorzystaniem spektrometrii ICP—QES i metod chemometrycznych”, Nafta-Gaz 2023, nr 9, s.611—617, doi: 10.18668/NG.2023.09.07
- [2] Bumus Z., J. Markowski, „Zastosowanie chromatografii gazowej i cieczowej w badaniach produktów ciekłych pirolizy mikrofalowej”, Nafta-Gaz 2022, nr 01, s. 64—79, doi: 10.18668/NG.2022.01.07
- [3] Abu M. S. Bakar and J. 0. Titiloye, “Catalytic pyrolysis of rice husk for bio-oil production,” J. Anal. Appl. Pyrolysis, vol. 103, pp. 362—368, Sep. 2013, doi: 10.1016/J.JAAP.2012.09.005.
- [4] Rahman M. M., R. Liu, and J. Cai, “Catalytic fast pyrolysis of biomass over zeolites for high quality bio—oil — A review,” Fuel Process. Technol., vol. 180, pp. 32—46, Nov. 2018, doi: 10.1016/J.FUPROC.2018.08.002.
- [5] Kianfar E., S. Hajimirzaee, S. mousavian, and A. S. Mehr, ccZeolite-based catalysts for methanol to gasoline process: A review,” Microchem. J., vol. 156, p. 104822, Jul. 2020, doi: 10.1016/J.MICROC.2020.104822.
- [6] Peng P., X. H. Gao, Z. F. Yan, and S. Mintova, “Diffusion and catalyst efficiency in hierarchical zeolite cata— lysts,” Natl. Sci. Rev., vol. 7, no. 11, pp. 1726—1742, Nov. 2020, doi: 10.1093/NSR/NWAA184.
- [7] Kolesnichenko N. V et al., “Biogasoline production via catalytic cracking process using zeolite and zeolite catalyst modified with metals: a review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 801, no. 1, p. 012051, May 2020, doi: 10.1088/1757-899X/801/1/012051.
- [8] Yilmaz B. and U. Muller, “Catalytic applications of zeolites in chemical industry,” Top. Catal, vol. 52, no. 6—7, pp. 888—895, Jun. 2009, doi: 10.1007/Sl1244—009-9226-0/FIGURES/10.
- [9] Cao Z., J. Niu, Y. Gu, R. Zhang, Y. Liu, and L. Luo, “Catalytic pyrolysis of rice straw: Screening of various metal salts, metal basic oxide, acidic metal oxide and zeolite catalyst on products yield and characterization,” J. Clean. Prod., vol. 269, p. 122079, Oct. 2020, doi: 10.1016/J.JCLEPRO.2020.122079.
- [10] Wu Q. et al., “Microwave—assisted pyrolysis of waste cooking oil for hydrocarbon bio—oil over metal oxides and HZSM—5 catalysts,” Energy Convers. Manag, vol. 220, p. 113124, Sep. 2020, doi: 10.1016/J.ENCONMAN.2020.113124.
- [11] Chen X. et al., “Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield,” Fuel Process. Technol., vol. 196, Dec. 2019, doi: 10.1016/j.fuproc.2019.106180.
- [12] Dada T. K., M. Sheehan, S. Murugavelh, and E. Antunes, “A review on catalytic pyrolysis for high-quality biooil production from biomass,” Biomass Convers. Biorefinery 2021, pp. 1—20, Mar. 2021, doi: 10.1007/813399— 021-01391-3.
- [13] Patwardhan P.R., J.A. Satrio, R.C. Brown, B.H. Shanks, Influence of inorganic salts on the primary pyrolysis products of cellulose, Bioresour. Technol. 101 (2010), 4646—4655.
- [14] Banks S.W., D.]. Nowakowski, A.V. Bridgwater, Impact of potassium and phosphorus in biomass on the properties of fast pyrolysis bio-oil, Energy Fuel 30 (2016), 8009—8018.
- [15] Hwang H., S. Oh, T.-S. Cho, I.-G. Choi, J.W. Choi, Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products, Bioresour. Technol. 150 (2013) 359—366.
- [16] Zhang Z.B., L. Qiang, X.N. Ye, L.P. Xiao, C.Q. Dong, Y.Q. Liu, Selective production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass: comparison of K 3PO4 , K 2HPO 4, and KH 2PO4, Bioresources 9 (2014) 4050—4062.
- [17] Lu Q., Z. Wang, C. Dong, Z. Zhang, Y. Zhang, Y. Yang, X. Zhu, Selective fast pyrolysis of biomass impregnated with ZnC12 : furfural production together with acetic acid and activated carbon as by—products, J. Anal. Appl. Pyrolysis 91 (2011). 273—279.
- [18] Collard F.—X., A. Bensakhria, M. Drobek, G. Volle, J. Blin, Influence of impregnated iron and nickel on the pyrolysis of cellulose, Biomass Bioenergy 80 (2015) 52—62. _
- [19] Chen M.Q., J. Wang, M.X. Zhang, M.G. Chen, X.F. Zhu, F.F. Min, Z.C. Tan, Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating, Journal of Analytical & Applied Pyrolysis 82 (2008) 145—150
- [20] Baloch H. A. et al. ,“Catalytic upgradation of bio-oil over metal supported activated carbon catalysts 1n sub—supercritical ethanol,” J. Environ. Chem. Eng, vol. 9, no. 2, p. 105059, Apr 2021, doi: 10.lOl6/J.JECE.2021.105059.
- [21] Cordero—Lanzac T. et al. , “Stability of an acid activated carbon based bifunctional catalyst for the raw bio—oil hydrodeoxygenation,” Appl. Catal. B Environ, vol. 203, pp. 389—399, Apr. 2017, doi: 10.1016/J.APCATB.2016.10.018.
- [22] Tang Z., W. Chen, Y. Chen, J. Hu, H. Yang, and H. Chen, “Preparation of low—nitrogen and high-quality biooil from microalgae catalytic pyrolysis with zeolites and activated carbon,” J. Anal. Appl. Pyrolysis, vol. 159, p. 105182, Oct. 2021, doi: 10.1016/J.JAAP.2021.105182.
- [23] Echaroj S., M. Santikunaporn, and A. N. Phan, “Supercritical ethanol liquefaction of bamboo leaves using functionalized reduced graphene oxides for high quality bio—oil production,” Renew. Energy, Dec. 2022, doi: 10.1016/J.RENENE.2022.12.110.
- [24] Nematian T., A. Shakeri, Z. Salehi, and A. A. Saboury, “Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio—oil,” Biotechnol. Biofuels, vol. 13, no. l, pp. 1—15, Mar. 2020, doi: 10.1186/813068—020—01688-X/FIGURES/14.
- [25] Rahzani B., M. Saidi, H. R. Rahimpour, B. C. Gates, and M. R. Rahimpour, “Experimental investigation of upgrading of lignin—derived bio-oil component anisole catalyzed by carbon nanotube-supported molybdenum,” RSCAdv., vol. 7, no. 17, pp. 10545—10556, Feb. 2017, doi: 10.1039/C6RA26121C.
- [26] Lu J ., Z. Zhang, G. Fan, L. Zhang, Y. Wu, and M. Yang, “Enhancement of microalgae bio-oil quality via hydrothermal liquefaction using functionalized carbon nanotubes,” J. Clean. Prod., vol. 285, p. 124835, Feb. 2021, doi: 10.1016/J.JCLEPRO.2020.124835.
- [27] Park H. J. et al., “Clean bio—oil production from fast pyrolysis of sewage sludge: Effects of reaction conditions and metal oxide catalysts,” Bioresour. Teehnol., vol. 101, no. 1, pp. 883—885, Jan. 2010, doi: 10.1016/J.BIORTECH.2009.06.103. ,
- [28] Arazo R. O., D. A. D. Genuino, M. D. G. de Luna, and S. C. Capareda, “Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor,” Sustain. Environ. Res., vol. 27, no. 1, pp. 7—14, Jan. 2017, doi: 10.1016/J.SERJ.2016.11.010.
- [29] Kim Y. and W. Parker, “A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio—oil,” Bioresour. Technol., vol. 99, no. 5, pp. 1409—1416, Mar. 2008, doi: 10.1016/J.BIORTECH.2007.01.056.
- [30] Qu L. et al., “A review of hydrodeoxygenation of bio-oil: model compounds, catalysts, and equipment,” Green Chem., vol. 23, no. 23, pp. 9348—9376, Nov. 2021, doi: 10.1039/D1GC03183J.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05ff5ded-4918-4967-8a9e-fb0e85cd61c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.