PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nowoczesne metody określania wytrzymałościowych właściwości materiałów konstrukcyjnych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Modern methods for determination of mechanical properties of engineering materials
Języki publikacji
PL
Abstrakty
PL
W artykule zaprezentowano współczesne maszyny wytrzymałościowe i przyrządy pomiarowe do badania właściwości mechanicznych materiałów. Zamieszczono oraz omówiono ich schematy ideowe, zalety, wady, ograniczenia i zastosowanie. W przypadku niektórych z nich przedstawiono literaturowe i własne wyniki z badań doświadczalnych.
EN
The paper reports modern testing machines and measuring instruments used to examine mechanical parameters of materials. Their schematic diagrams, advantages and disadvantages, limitations and applications are discussed. Selected already published results of tests and those achieved by the Authors are presented.
Wydawca
Rocznik
Tom
Strony
79--104
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Instytut Transportu Samochodowego
autor
  • Instytut Podstawowych Problemów Techniki PAN
  • Instytut Transportu Samochodowego
  • Instytut Podstawowych Problemów Techniki PAN
Bibliografia
  • [1] Affeldt E.E., Thermomechanical Fatigue Testing (TMF) of single-crystalline nickel-based superalloys for turbine engine application, MTU Aero Engines, Munich, Germany.
  • [2] Bartolotta P.A., Kantzos P., Krause A.L., In-plane biaxial yield surface study of cast titanium aluminide (TiAl), 5th International Conference on Biaxial/Multiaxial Fatigue and Fracture Cracow'97 Poland, 1997, 389-402.
  • [3] Bingleman L.W., Schajer G.S., DIC-Based Surface Motion Correction for ESPI Measurements, Experimental Mechanics, 51, 2001, 1207-1216.
  • [4] Chrysochoos A., Huon V., Jourdan F., Muracciole J.M., Peyroux R. and Wattrisse B., Use of Full-Field Digital Image Correlation and Infrared Thermography Measurements for the Thermomechanical Analysis of Material Behaviour Strain, 46, 2010, 117-130.
  • [5] Chu T.C., Ranson W.F., Sutton M.A, Peters W.H., Application of digital-image-correlation techniques to experimental mechanics, Experimental Mechanics, 25(3), 1985, 232-244.
  • [6] Cirello A., Pasta A. crack growth in bimaterial joints with crack perpendicular to interface, FCP 2003 Fatigue Crack Paths 2003 Parma, Italy, 18-20 September 2003, 249-258.
  • [7] Cirello A., Pasta A., Determination of the stress intensity factor by means of the ESPI technique in: Experimental Analysis of Nano and Engineering Materials and Structures; Edit. Gdoutos E.E., Springer, 2007, 395-396.
  • [8] Demmerle S., Boehler J.P., Optimal design of biaxial tensile cruciform specimens, J. Mech. Phys . Solids, 41, 1993, 143-181.
  • [9] Dietrich L., Grzywna P., Kukla D., Wykorzystanie metod optycznych do lokalizacji uszkodzeń zmęczeniowych, Przegląd Spawalnictwa, 13, 2012, 16-18.
  • [10] Dietrich L., Turski K., Waniewski M., Dziankowski Z., Kiryk R., Technika badań właściwości mechanicznych materiałów w złożonym stanie naprężenia, Prace IPPT, 1994, 11-104.
  • [11] Evans W.J., Screech J.E., Williams S.J., Thermo-mechanical fatigue and fracture of INCO718, Int. J. Fatigue, 30, 2008, 257-267.
  • [12] Fung Y.C., Foundations of solid mechanics, Prentice Hall Inc., Englewood Cliffs, NJ 1965.
  • [13] Ghiglia C. D., Pritt, D. M., Two dimensional phase unwrapping theory algorithms and software, Wiley Interscience 1998.
  • [14] Gower M.R., Shaw R.M., Towards a planar cruciform specimen for biaxial characterization of polymer matrix composites, Applied Mechanics and Materials, 24-25, 2010, 115-120.
  • [15] Gungor S., Moire Interferometry, Modern stress and strain analysis. A state of the art guide to measurement techniques, BSSM Technical Editors: J. Eaton Evans, J.M. Dulie-Barton, R.L. Burguete, 2009, 8-9.
  • [16] Kelly D.A., Problems in creep testing under biaxial stress systems, J. Strain Analysis, 11, 1976, 1-6.
  • [17] Lord J.D., Digital Image Correlation (DIC), Modern stress and strain analysis. A state of the art guide to measurement techniques, BSSM Technical Editors: J. Eaton Evans, J.M. Dulie-Barton, R.L. Burguete, 2009, 14-15.
  • [18] Nagesha A., Valsan M., Kannan R., Bhanu Sankara Rao K., Bauer V., Christ H-J, Singh V., Thermomecanical fatigue evaluation and life prediction of 316L(N) stainless steel, Int. J. Fatigue, 31, 2009, 636-643.
  • [19] Novozhilov V.V., Theory of elasticity, U.S. Department of commerce translation, 1861.
  • [20] Ogata T., Takahashi Y., Development of high-temperature biaxial fatigue testing machine using a cruciform specimen, 5th International Conference on Biaxial/Multiaxial Fatigue and Fracture Cracow'97, Poland, 1997, 257-272.
  • [21] Pierron S., Digital Speckle Pattern Interferometry, Modern stress and strain analysis. A state of the art guide to measurement techniques, BSSM Technical Editors: J. Eaton Evans, J.M. Dulie-Barton, R.L. Burguete, 2009, 14-15.
  • [22] Vial-Edwards C., Lira I., Martinez A., Monzenmayer M., Electronic speckle pattern interferometry analysis of tensile tests of semihard copper sheets, Experimental Mechanics, 41(1), 2001, 58-61.
  • [23] Winter G., Riedler M., Minichmayr R., Eichlseder W., Discussion of temperature distributions at TMF-testing, TMF Conference 2005, Berlin, 22 September 2005.
  • [24] www.dantecdynamics.com.
  • [25] www.instron.com.
  • [26] www.messphysic.com.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05fa573d-39e9-4e45-868e-6ca1bd66092f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.