PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

More statistical tools for maximum possible earthquake magnitude estimation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce additional statistical tools for estimating the maximum regional earthquake magnitude, mmax, as complement to those already introduced by Kijko and Singh (Acta Geophys. 59(4):674– 700, 2011). Four new methods are introduced and investigated, with regard to their applicability and performance. We present an example of application and a comparison that includes the methods introduced earlier by the previous authors. A condition for the existence of the Tate– Pisarenko estimate and a proof of the asymptotic equivalence of the Tate–Pisarenko and Kijko–Sellevoll estimates are presented in the two appendices
Czasopismo
Rocznik
Strony
579--587
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • Natural Hazard Centre, Pretoria University, Pretoria, South Africa
autor
  • Natural Hazard Centre, Pretoria University, Pretoria, South Africa
Bibliografia
  • 1. Alves If, Neves C (2013) Estimation of the finite right endpoint in the Gumbel domain. Stat Sin 24:1811–1835
  • 2. Beg MA (1982) Optimal tests and estimators for truncated exponential families. Metrica 29:103–113
  • 3. Beirlant J, Fraga AM, Gommes I (2016) Tail fitting for truncated and non-truncated Pareto-type distributions. Extremes 19(3):429–462
  • 4. Coles S (2001) An introduction to statistical modelling of extreme values. Springer, London
  • 5. Compson ET (2004) Asymptotic expansions (No. 55). Cambridge University Press, Cambridge, pp 36–47
  • 6. Cooke P (1980) Optimal linear estimation of bounds of random variables. Biometrika 67(1):257–258
  • 7. Cosentino P, Ficara V, Luzio D (1977) Truncated exponential frequency–magnitude relationship in the earthquake statistics. Bull Seismol Am 67:1615–1623
  • 8. De Haan L, Ferreira A (2007) Extreme value theory: an introduction. Springer, Berlin
  • 9. Dixit UJ, Nasiri PN (2008) Estimation of parameters of a right truncated exponential distribution. Stat Pap 49(2):225–236
  • 10. EERI Committee on Seismic Risk (H.C. Shah, chairman) (1984) Glossary of terms for probabilistic seismic risk and hazard analysis. Earthq Spectra 1:33–40
  • 11. Field EH, Jackson DD, Dolan JF (1999) A mutually consistent seismic hazard source model for southern California. Bull Seismol Soc Am 89(3):559–578
  • 12. Gutenberg B, Richter CF (1942) Earthquake magnitude, intensity, energy, and acceleration. Bull Seismol Soc Am 32:163–191
  • 13. Gutenberg B, Richter CF (1956) Earthquake magnitude, intensity, energy, and acceleration: (second paper). Bull Seismol Soc Am 46:105–145
  • 14. Guttorp P (1987) On least-squares estimation of b values. Bull Seismol Am 77(6):2115–2124
  • 15. Hamilton RM (1967) Mean magnitude of an earthquake sequence. Bull Seismol Soc Am 57(5):1115–1116
  • 16. Hannon PM, Dihiya RC (1999) Estimation of parameters for the truncated exponential distribution. Commun Stat Theory Methods 28(11):2591–2612
  • 17. Holschneider M, Zöller G, Hainzl S (2011) Estimation of the maximum possible magnitude in the framework of a doubly truncated Gutenberg–Richter model. Bull Seismol Soc Am 101(4):1649–1659
  • 18. Kijko A (2012) On Bayesian procedure for maximum earthquake magnitude estimation. Res Geophys 2(7):46–51
  • 19. Kijko A, Graham G (1998) Parametric-historic procedure for probabilistic seismic hazard analysis part I: estimation of maximum regional magnitude m max. Pure Appl Geophys 152(3):413–442
  • 20. Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys 59(4):674–700
  • 21. Lasocki S, Urban P (2011) Bias, variance and computational properties of Kijko’s estimators of the upper limit of magnitude distribution, M max. Acta Geophys 59(4):659–673
  • 22. Page R (1968) Aftershocks and micro aftershocks of the great Alaska earthquake of 1964. Bull Seismol Soc Am 58(3):1131–1168
  • 23. Pisarenko VF (1991) Statistical evaluation of maximum possible magnitude. Izvestiya Earth Phys 27:757–763
  • 24. Pisarenko VF, Sornette A, Sornette D, Rodkin MV (2008) New approach to the characterization of M max and of the tail of the distribution of earthquake magnitudes. Pure Appl Geophys 165(5):847–888
  • 25. Pisarenko VF, Sornette A, Sornette D, Rodkin MV (2014) Characterization of the tail of the distribution of earthquake magnitudes by combining the GEV and GPD descriptions of extreme value theory. Pure Appl Geophys 171(8):1599–1624
  • 26. Raschke M (2011) Inference for the truncated exponential distribution. Stoch Env Res Risk Assess 26(1):127–138
  • 27. Richter CF (1958) Elementary seismology. Freeman, San Francisco
  • 28. Rong Y, Jackson DD, Magistrale H, Goldfinger C (2014) Magnitude limits of subduction zone earthquakes. Bull Seismol Soc Am 104(5):2359–2377
  • 29. Stein RS, Hanks TC (1998) M ≥ 6 earthquakes in southern California during the twentieth century: no evidence for a seismicity or moment deficit. Bull Seismol Soc Am 88(3):635–652
  • 30. Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70(4):1337–1346
  • 31. Working Group on California Earthquake Probabilities (WGCEP) (1995) Seismic hazards in southern California: probable earthquakes, 1994–2024. Bull Seismol Soc Am 85(2):379–439
  • 32. Yegulalp TM, Kuo JT (1974) Statistical prediction of occurrence of maximum magnitude earthquakes. Bull Seismol Soc Am 64(2):393–414
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05f50b5b-efba-46ed-b495-9d6f76ceb858
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.