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Abstract 

The problem of dynamic stability of composite three-layered annular plate with viscoelastic core is the subject 
of the consideration. Plate composed of thin outer layers and soft core is loaded quickly in time with forces 

compressing facings and with temperature gradient in radial direction. Two kinds of plate support system are 
analysed: plate slideably clamped in thermo-mechanical problem and plate clamped on both edges in thermal 

analysis. The analytical and numerical solution, which is based on the orthogonalization and finite difference 

methods includes axisymmetric and asymmetric forms of buckling and rheological properties of plate core.  
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1. Introduction 

The composite, annular plate in complex field of loading can be found in different 

applications, like in: aerospace industry, mechanical and nuclear engineering. Selected 

plate parameters and directional gradient of temperature field create examined case of 

problem as dedicated to specific applications. It is a current and still developed issue, for 

example presented in works [1,2] where critical buckling and dynamic postbuckling 

responses of composite plate structures and FGM annular plates with imperfections are 

considered. In this paper reactions of composite, three-layered annular plate subjected to 

dynamically increasing mechanical loads and located in variable temperature field will be 

shown.  

2. Problem formulation 

The evaluation of the dynamic reaction of three-layered, composite annular plate is the 

objective of the undertaken consideration. Plate structure is composed of thin steel facings 

and thicker foam core with rheological properties. Plate is linearly in time, thermally 

or/and mechanically loaded with forces or/and temperature difference between edges, 

respectively. The mechanical loading and temperature differences are expressed by:                              

                                                      𝑝 = 𝑠𝑡,       ∆𝑇 = 𝑎𝑡                                                    (1)                           

where: p – compressive stress, s – rate of mechanical loading growth, T – temperature 

difference, a – rate of temperature loading growth, t – time. 

 Plate with clamped-clamped (C-C) edges is loaded only thermally but complex 

thermo-mechanical loading exists for plate with both edges slideably clamped (SC-SC).  

Figure 1 shows the scheme of examined plate in thermal environment with temperatures 

Ti and To in the area of plate hole and outer perimeter, respectively. Undertaken dynamic 
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stability problem requires to adopt the criterion of the loss of stability. The criterion 

presented by Volmir in work [3] was adopted. According to this criterion the loss of plate 

stability occurs at the moment when the speed of the point of maximum deflection reaches 

the first maximum value. Black dots shown in Figures mean the moment of the loss of 

plate dynamic stability. 
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Figure 1. Scheme of three-layered annular plate composed of facings (layers 1,3) and 

core (layer 2) loaded with compressive stress p and subjected to axisymmetrical 

temperature field Ti, To 

3. Methods of problem solution 

The main solution method is based on the orthogonalization and finite difference ones 

(FDM). Results have been compared with ones obtained using numerical, finite element 

method (FEM). The main assumptions accepted in both FDM and FEM methods of 

solution are following: classical theory of sandwich is used, forces compress plate facings 

and are uniformly distributed on inner or outer edge of facings, thickness of the individual 

layers is fixed, plate structure has symmetrical cross-section, deformation of plate elastic 

facings is expressed by nonlinear geometry, plate layers are tied.  

Assumptions connected with plate thermal environment are as follows: material constants 

do not depend on temperature, plate is subjected to the flat, time-dependent, axisymmetric 

field of temperature, heat flow exists in radial direction of plate facings, exchange of the 

heat on the plate surfaces is neglected, thermal isotropy exists. 

3.1. Finite difference method 

The FDM solution process is based on the solution proposed in work [4] for plate with 

slideably clamped edges (SC-SC) loaded mechanically. The main elements using in 

solution are following: formulation of dynamic equilibrium equations, formulation of the 

sectional forces and moments in facings, acceptance of the stress function to determine 

the resultant membrane forces, determination of the shape functions and form of plate 

predeflection, acceptance of dimensionless quantities and expressions, like for example: 

1=wd/h, where: wd – additional plate deflection, h=2h+h2 – total plate thickness (h - 

facing thickness, h2 - core thickness;) and connected with mechanical loading (see, Eq. 1): 

t*=tK7, K7=s/pcr, where: pcr – critical static load, and connected with thermal loading 

(see, Eq. 1): t*=tTK7, TK7=a/Tf, where: Tf – fixed temperature difference. Presented 

solution has been generalized on plate models subjected to temperature field and clamped-

clamped (C-C) supported cases. The temperature distribution is a function of plate radius 

and is expressed by logarithmic equation according to theory presented in work [5]:                                                    
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where: Ti, To – temperatures of the inner and outer plate perimeters, =r/ro, i=ri/ro - 

dimensionless plate radius and dimensionless inner plate radius, ri, ro – inner and outer 

plate radius, respectively.  

 Applied physical relations for viscoelastic material model of plate core correspond 

with the expressions of accepted three-elements, standard model. Kirchhoff’s modulus 
2G  

is presented using the operator forms:  
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where: CL, DL, EL, FL - quantities expressed by the elastic constants G2, G2 and viscosity 

constant  of viscoelastic material of plate core. 

Plate (SC-SC) with slideably clamped both edges can be loaded mechanically or 

thermally, or thermo-mechanically. 

The main conditions of mechanically loaded plate edges (SC-SC) are expressed by the 

stress function  and formulae for radial stress r in edge points of discretization and its 

derivative with respect to time t: 

            for r = ri(o)     ' 1(2) ' 1(2)

1
 and r r r ts t d s d

r
  = = −   = −                                                (4) 

but for plate edges (SC-SC) subjected to only thermal loads conditions are expressed by: 

                                                             0r r ri( o )
σ

=
=                                                         (5) 

where: d1, d2 – quantities, equal to 0 or 1, determining the loading of the inner or/and outer 

plate perimeter. 

The conditions for thermally loaded plate with edges (C-C) are expressed by the 

equations (7), (8) established in discrete points 0 and N+1, which are the points of the 

plate support. Equations (7), (8) have been obtained from equation (6), which is expressed 

using the relations of Hooke’s law in plane stress state performed for normal forces with 

thermal elements in plate facings and after the elimination of the radial (r) and 

circumferential () strains and acceptance of stress function : 
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where: 
2

2

o
r

S
h
= , F - dimensionless stress function 

2
F

Eh
=


, , E,  - linear expansion 

coefficient, Young’s modulus and Poisson’s ratio of facing material, respectively. 

Approximating the derivatives in points 0 and N+1 with the use of FDM differences 

in front and back the following conditions and derivatives with respect to time t were 

established: 
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where: 1 1 1 1o N N o N Ny ,y ,y ,y ,y ,y ,y ,y+ + - elements of stress function vector 'Y F= and 

derivatives with respect to time t in discrete points 0,1,N,N+1.  

Solution process required a lot of algebraic operations and using the orthogonalization 

method. Then, approximating the derivatives with respect to  by the central differences 

in discrete points the following system of equations for three-layered annular plate with 

viscoelastic core in thermal environment has been obtained: 

                                          L L K K+ + + −  = PU Q P U Q U U ,                                                (9) 

                                   Y Y NS T = −   'M Y Q , Y Y N t
S T


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'
M Y Q= −                                 (10) 

                                      V Z V ZZ( ) ( )( )M V Q= , V Z V ZZ( ) ( )( )M V Q=                                       (11) 

                                DL D U UL G GLM D M D M U M U M G M G= + + + + ,                          (12) 

                            GGL GG GU GUL GD GDLM G M G M U M U M D M D= + + + + ,                (13) 

where: 
'

2
27 oK TK r

h
h

h
M= ; M=2h+h22; , 2 - facing and core mass density, 

respectively; 

L Y V Z Y V, , , , , , , , , , , , , , , , , , , , ,ZU Y V Z U U U Y V Z Q Q Q Q Q Q Q Q D G D G - vectors of initial 

and additional deflections, components of the stress function, geometric and material 

parameters, radius , quantity b (b – length of the interval in FDM), coefficients ,  
(differences of radial and circumferential displacements of points in the middle surfaces 

of facings) and number m of buckling waves and derivatives with respect to time t;  

D G GG GD DL GL GGL GDL U UL GL UY U GZ LV, ,, , , , , , , , , , , , ,P P M M M M M M M M MM M M M M M

- matrices with elements composed of geometric and material plate parameters, the 

quantity b, radius , the number m and derivatives with respect to time t, respectively. 

Way of solution to the problem of static stability of plate loaded thermally or 

mechanically is performed in works [4,6] in detail, respectively. 

3.2. Finite element method 

Annular plate model composed of shell and solid elements has been built using the finite 

element method. The outer surfaces of facing mesh elements are tied with the outer 

surfaces of core elements using the surface contact interaction. The calculations were 

carried out at the ACC CYFRONET-CRACOW using Dynamic option of the ABAQUS 

system (KBN/SGI_ORIGIN_2000/PŁódzka/030/1999).  
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4. Numerical examples 

Dynamic reaction of three-layered annular plate will be shown for plate with slideably 

clamped SC-SC both edges loaded thermo-mechanically and for plate with both clamped 

edges C-C loaded thermally. 

4.1. Calculation data 

The accepted in numerical calculations material, geometrical and loading parameters of 

examined plate models are as follows: 

inner radius: ri=0.2 m, outer radius: ro=0.5 m, facing thickness: h=0.001 m, core thickness: 

h2=0.0025 m, 0.005 m, 0.01 m, steel for facing material: Young’s modulus 

E=2.1105 MPa, Poisson’s ratio =0.3, mass density =7.85103 kg/m3, linear expansion 

coefficient =0.000012 1/K, two kinds of polyurethane foam of core material treated as 

isotropic one: Kirchhoff’s modulus G2=5 MPa, Young’s modulus E2=13 MPa, viscosity 

constants: G2=3.13 MPa, =212.92104 MPas and G2=15.82 MPa, G2=69.59 MPa, 

=7.93104 MPas, Poisson’s ratio =0.3, mass density 2=64 kg/m3, linear expansion 

coefficient =0.00007 1/K, the rates of mechanical loading growth is equal to: s931 

MPa/s (K7=20 1/s) – for plate loaded on outer edge, the rate of thermal loading growth is 

equal to: a=200 K/s; rates K7, TK7 are equal K7=TK7. Thermal environment is 

characterized by axisymmetric, flat temperature field with positive (Ti>To) or negative 

(Ti<To) gradient (see, Fig 1). 

4.2. Convergence analysis  

The calculations carried out using the finite difference method have been proceeded by 

the selection of number N of discrete points. Table 1 presents the critical, static Tcr and 

dynamic temperature difference Tcrdyn versus different plate modes m for FDM plate 

model with different number N of the discrete points, equal to N=11,14,17,21,26. Plate is 

subjected to the temperature field with positive temperature gradient.  

Table 1. Critical static Tcr and dynamic temperature differences Tcrdyn of FDM plate 

model C-C with core parameters: G2=15.82 MPa, G2=69.59 MPa, =7.93104 MPas 

loaded thermally with positive gradient versus different number N of the discrete points 

m 
Tcr  / Tcrdyn ,  K 

N=11 N=14 N=17 N=21 N=26 

0 42.17 / 42.3 42.21 / 41 42.23 / 40 42.24 / 39.6 42.51 / 38.9 

5 44.31 / 35.2 44.50 / 34,4 44.60 / 34.2 44.68 / 34.1 44.74 / 33.5 

6 45.45 / 34.4 45.72 / 33,6 45.85 / 33.5 45.95 / 33.8 46.02 / 33.3 

7 46.93 / 34.3 47.18 / 33,5 47.33 / 33.4 47.44 / 33.3 47.53 / 33.2 

8 48.67 / 34.2 48.93 / 34 49.09 / 33.9 49.22 / 33.3 49.31 / 33.3 

The analysis of differences of Tcrdyn values, which depend on the number N shows small 

fluctuations (5 % of technical error). The number N=14 has been chosen in numerical 

calculations. 
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4.3 Plate C-C loaded thermally 

Results presented in Figures 2,3,4,5 were calculated for plates loaded with positive 

temperature gradient. Figures 2 shows the comparison between the dynamic responds of 

plate with two kinds of viscoelastic core parameters represented by Kirchhoff’s modulus: 

G2=5 MPa and G2=15.82 MPa, respectively. Presented results show the dynamic reaction 

of axisymmetric m=0 and asymmetric m≠0 plate modes. Character of behaviour is similar. 

Minimal value of dynamic critical temperature difference Tcrdyn is for waved plate mode. 

Plate with stiffer core (G2=15.82 MPa) loses dynamic stability with higher value of 

temperature difference Tcrdyn calculated for plate mode with greater number of 

circumferential buckling waves (see, Table 2). Figure 3 shows the influence of viscoelastic 

core thickness on run of curves 1max=f(t*) for axisymmetric m=0 plate mode and 

asymmetric m≠0 ones, which correspond with minimal value of Tcrdyn. Plate core 

parameters are G2=15.82 MPa, G2=69.59 MPa, =7.93104 MPas. Of course with thicker 

core the value of Tcrdyn is higher and number m of circumferential buckling waves 

increases. For plate with core thickness h2=0.01 m number m is equal to m=6. Figure 4 

presents the influence of viscosity parameter  (eta) of the same plate core G2=5 MPa on 

dynamic respond of plate, whose mode number m is equal to m=4. The influence of values 

of viscosity constant  is weak. Just, strongly decrease of values  changes plate reaction. 

a)                                                                  b) 

 
Figure 2. Time histories of deflections of FDM plate model with  

viscoelastic core: a) G2=5 MPa, b) G2=15.82 MPa depending on mode m 

 

Figure 3. Time histories of deflections of FDM plate model  

with viscoelastic core G2=5 MPa depending on core thickness h2 
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Figure 4. Time histories of deflections of FDM plate model with  

viscoelastic core G2=5 MPa depending on viscosity parameter  (eta) 

Table 2 shows the example results for FDM plate model with different viscoelastic 

material and thickness of the core. FDM plate model with core parameters: G2=5 MPa, 

h2=0.005 m is compared with FEM model. Dynamic critical temperature differences 

Tcrdyn and buckling mode m depend on core parameters. The differences of Tcrdyn values 

for FEM plate with different mode m are less than observed for FDM model. Some range 

of Tcrdyn values exists for FEM plate model. Figure 5 shows the example run of curves of 

displacement and velocity of displacement, and buckling mode of FEM plate. Presented 

buckling case is for m=2. 

 

Table 2. Critical dynamic temperature differences Tcrdyn of FDM and FEM plate  

model C-C with viscoelastic core loaded thermally with positive gradient  

versus different mode m and structure parameters G2, h2 

m 

Tcrdyn ,  K 

FDM plate model FEM plate model 

G2 , MPa / h2 , m 

5 / 0.005 15.82 / 0.005 5 / 0.025 5 / 0.01 5 / 0.005 

0 19,8 41 17 26,3 17 

1 19,9 40,9 17,1 26,9 17 

2 19,1 39 16,3 25,7 17 

3 18,4 36,9 15,4 24,8 17 

4 18,3 35,5 15 24 18 

5 18,5 34,4 15,1 22,9 19 
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Figure 5. Time histories of deflection and velocity of deflection and buckling  

mode m=2 of FEM plate model with viscoelastic core G2=5 MPa 

4.4 Plate SC-SC loaded thermally and mechanically 

Figure 6 presents values of both critical static pcr and dynamic pcrdyn loads calcualted for 

FDM plate SC-SC with viscoelastic core characterized by the value G2 equal to G2=5 MPa 

versus number m of buckling mode. Plate is subjected to positive and negative 

tempartature gradiend. Figure shows the influence of thermal fields on dynamic reaction 

of plates mechanically loaded. Additionally, the comparison with results obtained in basic 

static analysis for plates loaded only mechanically is presented.    

The dynamic respond of plate subjected to temperature field differs for plates with various 

buckling mode m. For axisymmetric m=0 plates and asymmetric ones with number m=1÷3 

of circumferential, buckling waves direction of temperature gradient influences the values 

of pcrdyn. With the increase of number m the differences disappear. There are not observed 

significant differences between the values of pcrdyn calculated for plates subjected to 

temperature field and not located in thermal environment (see, mode m=7 in Figure 6). 

 

Figure 6. Distribution of values of static pcr and dynamic pcrdyn loads for FDM plates SC-

SC with viscoelastic core G2=5 MPa for two temperature fields versus buckling mode m 
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5. Conclusions  

The way of analytical and numerical solution to the problem of dynamic thermo-

mechanical loading and dynamic sensitivity of composite plate with viscoelastic core have 

been presented. Results show the significant meaning of geometrical and material 

structure parameters, less influence of rheological core properties, values fluctuations and 

dynamic respond character of structure with different buckling waves, influence of 

temperature gradient on thermal and mechanical dynamic critical state of plate.  
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