Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The hereby work presents the tribological properties of the iron-nickel alloys and their dependence on the microstructure and thickness of the probes as well as the presence of an external magnetic field during the synthesis. Coatings were electroplated on the brass and copper metallic substrates using galvanostatic deposition in the same electrochemical bath condition (Fe and Ni sulfates) and the electric current density. The surface morphology of the films was observed by Scanning Electron Microscopy. The average composition of all FeNi coatings was measured using Energy Dispersive X-ray Spectroscopy. Tribo-mechanical properties such as microhardness, roughness, and friction coefficient were determined in the obtained structures. The morphology and tribologial properties of the FeNi coatings clearly depend on both the substrate (Cu, CuZn) itself and the presence of an external magnetic field (EMF) applied during the deposition process.
Czasopismo
Rocznik
Tom
Strony
687--694
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Bialystok University of Technology, Faculty of Electrical Engineering, Department of Electrotechnics, Power Electronics and Electrical Power Engineering, ul. Wiejska 45D, 15-351 Białystok, Poland
autor
- Bialystok University of Technology, Faculty of Mechanical Engineering, Institute of Biomedical Engineering, ul. Wiejska 45C, 15-351 Białystok, Poland
autor
- University of Bialystok, Faculty of Chemistry, Department of Physical Chemistry, ul. Ciołkowskiego 1K, 15-245 Białystok, Poland
autor
- University of Bialystok, Faculty of Chemistry, Department of Physical Chemistry, ul. Ciołkowskiego 1K, 15-245 Białystok, Poland
Bibliografia
- 1. Białostocka A, Idzkowski A. The effect of Ground Changes and the Setting of External Magnetic Field on Electroplating FeNi Layers: Progress in Automation, Robotics and Measurement Techniques in Automation 2019:684-696.
- 2. Białostocka AM, Klekotka U, Kalska-Szostko B. The Influence of the Substrate and External Magnetic Field Orientation on FeNi Film Growth. Energies 2022; 15 (10): 1-12. https://dx.doi.org/10.3390/en15103520.
- 3. ChenL, Liu Z, Wang X, et al. Effects of Surface Roughness Parameters on Tribological Performance for Micro-textured Eutectic Aluminum–Silicon Alloy. Journal of Tribology 2020; 142 (2): 021702, http://dx.doi.org/101115/1.4044990.
- 4. DaltinAL, Benaissa M, Chopart JP. Nucleation and crystal growth in magnetoelectrodeposition. Materials Science and Engineering 2018; 424: 012022, http://dx.doi.org/10.1088/1757-899X/424/1/012022.
- 5. Dragos O, Chiriac H, Lupu N, et al. Anomalous Codeposition of fcc NiFe Nanowires with 5-55 % Fe and Their Morphology, Crystal Structure and Magnetic Properties. Journal of The Electrochemical Society 2016;163(3): D83-D94, http://dx.doi.org/10.1149/2.0771603jes.
- 6. Duboust N, Ghadbeigi H, Pinna C, et al. An optical method for measuring surface roughness of machined carbon fibre-reinforced plastic composites. Journal of Composite Materials 2017; 51(3): 289-302, http://dx.doi.org/10.1177/0021998316644849.
- 7. Dzierwa A, Gałda L, Tupaj M, et al. Investigation of wear resistance of selected materials after slide burnishing process. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020;22 (3): 432-439, http://dx.doi.org/10.17531/ein.2020.3.5.
- 8. Dziurka R, Madej M, Kopyściański M, et al. The influence of microstructure of medium carbon heat-treatable steel on its tribological properties. Key Engineering Materials 2015;641: 132-135, http://dx.doi.org/10.4028/www.scientific.net/KEM.641.132.
- 9. Góral A, Lityńska-Dobrzyńska L, Kot M. Effect of Surface Roughness and Structure Features on Tribological Properties of Electrodeposited Nanocrystalline Ni and Ni/Al2O3Coatings. Journal of Materials Engineering and Performance 2017; 26(5): 2118-2128, http://dx.doi.org/10.1007/s11665-017-2662-2.
- 10. Grzesik W, Niesłony P, Habrat W. Investigation of the tribological performance of AlTiN coated cutting tools in the machining of Ti6Al4V titanium alloy in terms of demanded tool life. Eksploatacja i Niezawodnosc – Maintenance and Relibility 2019; 21 (1): 153-158, http://dx.doi.org/10.17531/ein.2019.1.17.
- 11. Gurrappa I, Binder L. Electrodeposition of nanostructured coatings and their characterization – A review. Science and Technology of Advanced Materials 2008;9: 043001 (11 pp), http://dx.doi.org/10.1088/1468-6996/9/043001.
- 12. Gül H, Uysal M, Akbulut H, et al. Tribological Behavior of Copper/MWCNT Nanocomposites Produced by Pulse Electrodeposition. Acta Physica Polonica A 2014;125: 254-256, http://dx.doi.org/10.12693/APhysPolA.1 25.254.
- 13. Khazi I, Mescheder U. Micromechanical Properties of Anomalously Electrodeposited Nanocrystalline Nickel-Cobalt Alloys: A Review. Materials Research Express 2019, http://dx.doi.org/10.1088/2053-159/ab1bb0.
- 14. Kuru H, Kockar H, Alper M. Giant magnetoresistance (GMR) behavior of electrodeposited NiFe/Cu multilayers: Dependence of nonmagnetic and magnetic layer thickness. Journal of Magnetism and Magnetic Materials 2017;444: 132-139, http://dx.doi.org/10.1016/j.jmmm.2017.08.019.
- 15. Macek W, Szala M, Trembacz J, et al. Effect of non-zero stress bending-torsion fatigue on fracture surface parameters of 34CrNiMo6 steel notched bars. Production Engineering Archives 2020; 26(4): 167-173, http://dx.doi.org/ 10.30657/pea.2020.26.30.
- 16. Mbugua NS, Kang M, Zhang Y, et al. Electrochemical Deposition of Ni, NiCo Alloy and NiCo-Ceramic Composite Coatings – A Critical Review. Materials 2020;13: 3475, http://dx.doi.org/10.3390/ma13163475.
- 17. Morimoto R, Miura M, Sugiyama A, et al. Long-Term Electrodeposition under a Uniform Parallel Magnetic Field. 1. Instability of Two-Dimensional Nucleation in an Electric Double Layer. The Journal of Physical Chemistry 2020; 124; 52: 11854-11869, http://dx.doi.org/10.1021/acs.jpcb.0c05903.
- 18. Nweze CI, Ekpunobi AJ. Electrodeposition of Zinc Selenide Films on Different Substrates and Its Characterization. International Journal of Scientific & Technology Research 2014; 3; 9.
- 19. Okamoto N, Wang F, Watanabe T. Adhesion of Electrodeposited Copper, Nickel and Silver Films on Copper, Nickel and Silver Substrates. Materials Transactions 2004; 45; 12: 3330-3333.
- 20. Palomar-Pardavé M, Scharifker BR, Arce EM, et al. Electrochimica Acta 2005; 50: 4736-4745, http://dx.doi.org/10.1016/j.electacta.2005.03.004.
- 21. Persson K. Materials Data on FeNi (SG:123) by Materials Project. 10.17188/1197364 (2016).
- 22. Persson K. Materials Data on FeNi3 (SG:221) by Materials Project. 10.17188/1190197 (2015).
- 23. Rao VR, Bangera KV, Hegde ACh. Magnetically induced electrodeposition of Zn-Ni alloy coatings and their corrosion behaviors. Journal of Magnetism and Magnetic Materials 2013; 345: 48-54, http://dx.doi.org/10.1016/j.jmmm.2013.06.014.
- 24. Rezende GLT, Cesar VD, do Lago CBD, et al. A review of Corrosion Resistance Nanocomposite Coatings. Electrodeposition of Composite Materials; 147-185, http://dx.doi.org/10.5772/62048.
- 25. Sedlaček M, Gregorčič P, Podgornik B. Use of the roughness parameters Ssk and Sku to control friction – a method for designing surface texturing. Tribology Transactions 2016, http://dx.doi.org/10.1080/10402004.2016.1159358.
- 26. Sedlaček M, Podgornik B, Vižintin J. Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribology International 2012; 48: 102-112, http://dx.doi.org/10.1016/j.triboint.2011.11.008.
- 27. Shuai C, et al. A peritectic phase refines the microstructure and enhances Zn implants. Journal of Materials Research and Technology 2020; 9(3): 2623-2634, https://dx.doi.org/10.1016/j.jmrt.2020.04.037.
- 28. Sriraman KR, Manimunda P, Chromik RR, et al. Effect of crystallographic orientation on the tribological behavior of electrodeposited Zn coatings. Communication 2016;6: 17360, http://dx.doi.org/10.1039/c5ra15490a.
- 29. Svahn F, Kassman-Rudolphi Å, Wallén E. The influence of surface roughness on friction and wear of machine element coatings. Wear 2003; 254: 1092-1098, http://dx.doi.org/10.1016/S0043-1648(03)00341-7.
- 30. Tayebi N, Polycarpou AA. Modeling the effect of skewness and kurtosis on the static friction coefficient of rough surfaces. Tribology International 2004; 37: 491-505, http://dx.doi.org/10.1016/j.triboint.2003.11.010.
- 31. Thomas BG. Metals Processing. Structure, Processing, and Properties of Engineering Materials. editor J. Adams, Wesley A., chapter 14.
- 32. Torabinejad V, Aliofkahazraei M, Rouhaghdam SA, et al. Tribological behavior of electrodeposited Ni-Fe multilayer coating. Tribological Transactions 2016, http://dx.doi.org/10.1080/10402004.2016.1230687.
- 33. Tudela I, Zhang Y, Pal M, et al. Ultrasound-assisted electrodeposition of nickel: Effect of ultrasonic power on the characteristics of thin coatings. Surface & Coatings Technology 2015; 264: 49-59, http://dx.doi.org/10.1016/j.surfcoat.2015.01.020.
- 34. Wang Z-B, Li W-Y, Shang S, et al. Performance degradation comparisons and failure mechanism of silver metal oxide contact materials in relays application by simulation. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22 (1): 86-93, http://dx.doi.org/10.17531/ein.2020.1.10.
- 35. Wei X, et al. Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline batteries. Electrochimica Acta 2016; 212: 603-613, https://dx.doi.org/10.1016/j.electacta.2016.07.041.
- 36. Yang L-L, Chen ChCh, Yuan J, et al. Effect of applied magnetic field on the electroplating and magnetic properties of amorphous FeNiPGd thin film. Journal of Magnetism and Magnetic Materials 2020; 495: 165872, https://dx.doi.org/10.1016/j.jmmm.2019.165872.
- 37. Zangari G. Electrodeposition of Alloys and Compounds in the Era of Microelectronics and Energy Conversation Technology. Coatings 2015: 195-218, http://dx.doi.org/10.3390/coatings5020195.
- 38. Żurowski W. Structural factors contributing to increased wear resistance of steel friction couples. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2012; 14 (1): 19-24.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05f2665f-019b-4e15-a739-4c98cf5f60eb