PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling seismic wave propagation in TTI media using multiaxial complex frequency shifted nearly perfectly matched layer method

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The nearly perfectly matched layer (NPML) is a non-split perfectly matched layer that directly transforms the wave field. Compared to other non-split perfectly matched layers, NPML is computationally efficient and has advantages such as not changing the form of the equation and being easy to implement. However, in TTI medium simulations it is found that the NPML is very unstable and cannot absorb near-grazing incident waves. This explains why the CPML is currently used more frequently. In this study, the complex frequency shifted transform is used to enhance the absorption of near-grazing incident waves with NPML and to avoid the generation of low-frequency singular values. At the same time, the double damping profile is used to improve the stability of the boundary we called MCFS-NPML. Subsequently, this method is also applied to seismic wave equations in poroelastic media. In order to further improve the absorption capacity of the boundary and weaken the deviation caused by the discrete difference, a new attenuation function is proposed.
Czasopismo
Rocznik
Strony
89--109
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • College of Geo-Exploration Science and Technology, Jilin University, 938 S, West Minzhu Ave, Changchun 130021, Jilin, China
autor
  • College of Geo-Exploration Science and Technology, Jilin University, 938 S, West Minzhu Ave, Changchun 130021, Jilin, China
Bibliografia
  • 1. Adhikari S, Friswell MI (2001) Eigenderivative analysis of asymmetric nonconservative systems. Int J Numer Meth Eng 51:709–733
  • 2. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetics waves. J Comput Phys 114:185–200
  • 3. Berenger JP (2004) On the reflection from Cummer’s nearly perfectly matched layer: a perfectly matched layer for the absorption of electromagnetic waves. IEEE Microwave Wireless Components Lett 14:334–336
  • 4. Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid: I—low-frequency range. J Acoust Soc Am 28:168–178
  • 5. Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid: II—height-frequency range. J Acoust Soc Am 28:179–191
  • 6. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33:1482–1489
  • 7. Cerjan C, Kosloff D, Kosloff R et al (1985) A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics 50:705–708
  • 8. Charles S, Mitchell DR, Holt RA et al (2008) Data-driven tomographic velocity analysis in tilted transversely isotropic media: a 3D case history from the Canadian Foothills. Geophysics 73:261–268
  • 9. Chen KY (2010) Study on perfectly matched layer absorbing boundary condition. Geophys Prosp Pet 49:472–477
  • 10. Chen JY (2011) Application of the nearly perfectly matched layer for seismic wave propagation in 2D homogeneous isotropic media. Geophys Prosp 59:662–672
  • 11. Chen JY (2012) Nearly perfectly matched layer method for seismic wave propagation in poroelastic media. Can J Explor Geophys 37:22–27
  • 12. Chen HM, Zhou H et al (2017) Modeling elastic wave propagation using $K$ -space operator-based temporal high-order staggered-grid finite-difference method. IEEE Trans Geosci Remote Sens 55(2):801–815
  • 13. Chew WC, Liu QH (1996) Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J Comput Acoust 4:341–359
  • 14. Chew WC, Weedon WH (1994) A 3D perfectly matched medium from modified maxwell’s equations with stretched coordinates. Microwave Opt Technol Lett 7:599–604
  • 15. Clayton R, Engquist B (1977) Absorbing boundary conditions for acoustic and elastic wave equations. Bull Seismol Soc Am 67:1529–1540
  • 16. Collino F, Monk PB (1998) Optimizing the perfectly matched layer. Comput Methods Appl Mech Eng 164:157–171
  • 17. Collino F, Tsogka C (2001) Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics 66:294–307
  • 18. Cummer SA (2003) A simple nearly perfectly matched layer for general electromagnetic media. IEEE Microwave Wirel Compon Lett 13:128–130
  • 19. Dong Z (1995) 3-D viscoelastic anisotropic modeling of data from a multicomponent, multiazimuth seismic experiment in northeast Texas. Geophysics 60:1128–1138
  • 20. Drossaert FH, Giannopoulos A (2007) A nonsplit complex frequencyshifted PML based on recursive integration for FDTD modeling of elastic waves. Geophysics 72:9–17
  • 21. Engquist B, Majda A (1977) Absorbing boundary conditions for the numerical simulation of waves: mathematical. Computing 31:629–651
  • 22. Festa G, Delavaud E, Vilotte JP (2005) Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations. Geophys Res Lett 32:L20306
  • 23. Gallina P (2003) Effect of damping on asymmetric systems. J Vib Acoust 125:359–364
  • 24. Gedney SD (1996) An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media. Electromagnetics 16:399–415
  • 25. Groby J, Tsogka C (2006) A time domain method for modeling viscoacoustic wave propagation. J Comput Acoust 14:201–236
  • 26. Hastings F, Schneider J, Broschat S (1996) Application of the perfectly matched layer PML absorbing boundary condition to elastic wave propagation. J Acoust Soc Am 100:3061–3069
  • 27. Higdon RL (1991) Absorbing boundary conditions for elastic waves. Geophysics 56:231–241
  • 28. Hu FQ (1996) On absorbing boundary conditions for linearized euler equations by a perfectly matched layer. J Comput Phys 129:201–219
  • 29. Hu WY, Abubakar A, Habashy TM (2007) Application of the nearly perfectly matched layer in acoustic wave modeling. Geophysics 72:169–175
  • 30. Igel H, Mora P, Riollet B (1995) Anisotropic wave propagation through finite difference grids. Geophysics 60:1203–1216
  • 31. Komatitsch D, Martin R (2007) An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72:155–167
  • 32. Komatitsch D, Tromp J (2003) A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophys J Int 154:146–153
  • 33. Kuzuoglu M, Mittra R (1996) Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microwave Guided Wave Lett 6:447–449
  • 34. Martin R, Komatitsch D, Ezziani A (2008) An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media. Geophysics 73(4):T51–T61
  • 35. Mezafajardo KC, Papageorgiou AS (2008) A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis. Bull Seismol Soc Am 98:1811–1836
  • 36. Ramadan O (2005) Unconditionally stable nearly PML algorithm for linear dispersive media. IEEE Microwave Wirel Compon Lett 15:490–492
  • 37. Reynolds AC (1978) Boundary conditions for the numerical solution of wave propagation problems. Geophysics 43:1099–1110
  • 38. Roden JA, Gedney SD (2000) Convolution PML (C-PML): An efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave Opt Technol Lett 27:334–339
  • 39. Sacks Z, Kingsland D, Lee R, Lee J (1995) A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans Antennas Propag 43:1460–1463
  • 40. Sochacki J, Kubichek R, George J (1987) Absorbing boundary conditions and surface waves. Geophysics 52:60–71
  • 41. Tan S, Huang L (2014) An efficient finite-difference method with high-order accuracy in both time and space domains for modelling scalar-wave propagation. Geophys J Int 2:1250–1267
  • 42. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954–1966
  • 43. Tsvankin I (2001) Seismic signatures and analysis of reflection data in anisotropic media. Elsevier
  • 44. Zeng YQ, Liu QH (2001) A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations. J Acoust Soc Am 109:2571–2580
  • 45. Zhang W, Shen Y (2010) Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling. Geophysics 75(4):T141–T154
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05e6cbb9-2bb7-4b52-b351-0f0d2820b635
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.