PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antimicrobial Properties of Silver and Copper Nanoparticles Synthesized by Green Synthesis Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Właściwości antymikrobiologiczne nanocząstek srebra i miedzi syntetyzowanych metodą zielonej syntezy
Języki publikacji
EN
Abstrakty
EN
These days, difficult-to-treat bacterial infections are occurring with increasing frequency. Antibiotic drug resistance poses a serious challenge in both medical and military contexts, threatening the effectiveness of therapies and the ability to combat infections in extreme conditions. Nanobiotechnology methods, particularly metal nanoparticles, could be a potential solution due to their unique biological, chemical, and physical properties, as well as the potent antimicrobial activity they exhibit. The presented research aimed to produce silver (AgNPs) and copper nanoparticles (CuNPs) by an environmentally friendly method without synthetic reducing agents (in contrast to classical methods of synthesizing nanoparticles) and to determine antimicrobial properties. For this purpose, the synthesis of silver and copper nanoparticles using coffee bean extract was carried out. Then the zeta potential and size distribution of the obtained nanoparticles were determined. The minimum inhibitory (MIC) and bactericidal or fungicidal concentrations (MBC/MFC) were determined on biological models (C. albicans, S. enterica, L. monocytogenes), the viability of microorganisms was analyzed, and the number of colony-forming units was determined. The results show that silver nanoparticles have a more potent antimicrobial effect, which was confirmed in all the tests carried out, as well as exhibiting more excellent colloidal stability compared to copper nanoparticles.
PL
W dzisiejszych czasach trudne do leczenia infekcje bakteryjne występują coraz częściej. Oporność na antybiotyki stanowi poważne wyzwanie zarówno w kontekście medycznym, jak i wojskowym, zagrażając skuteczności terapii i zdolności do zwalczania infekcji w ekstremalnych warunkach. Metody nanobiotechnologiczne, w szczególności nanocząstki metali, mogą być potencjalnym rozwiązaniem ze względu na ich unikalne właściwości biologiczne, chemiczne i fizyczne oraz silną aktywność przeciwdrobnoustrojową, którą wykazują. Prezentowane badania miały na celu wytworzenie nanocząstek srebra (AgNPs) i miedzi (CuNPs) przyjazną dla środowiska metodą bez syntetycznych środków redukujących (w przeciwieństwie do klasycznych metod syntezy nanocząstek) oraz określenie ich właściwości przeciwdrobnoustrojowych. W tym celu przeprowadzono syntezę nanocząstek srebra i miedzi przy użyciu ekstraktu z ziaren kawy, a następnie określono potencjał zeta i rozkład wielkości otrzymanych nanocząstek. Na modelach biologicznych (C. albicans, S. enterica, L. monocytogenes) wyznaczono minimalne stężenia hamujące (MIC) oraz bakteriobójcze lub grzybobójcze (MBC/MFC), przeanalizowano żywotność mikroorganizmów oraz określono liczbę jednostek tworzących kolonie. Wyniki pokazują, że nanocząstki srebra mają silniejsze działanie przeciwdrobnoustrojowe, co zostało potwierdzone we wszystkich przeprowadzonych testach, a także wykazują większą stabilność koloidalną w porównaniu z nanocząstkami miedzi.
Rocznik
Strony
17--25
Opis fizyczny
Bibliogr. 39 poz., wykr.
Twórcy
  • Warsaw Univeristy of Life Sciences, Department of Nanobiotechnology, Institute of Biology, 8 Ciszewskiego St., 02-786, Warsaw, Poland
  • Warsaw Univeristy of Life Sciences, Department of Nanobiotechnology, Institute of Biology, 8 Ciszewskiego St., 02-786, Warsaw, Poland
autor
  • Warsaw Univeristy of Life Sciences, Department of Nanobiotechnology, Institute of Biology, 8 Ciszewskiego St., 02-786, Warsaw, Poland
  • University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
autor
  • Warsaw University of Life Sciences, Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, 159 Nowoursynowska St., 02-776 Warsaw, Poland
  • Warsaw Univeristy of Life Sciences, Department of Nanobiotechnology, Institute of Biology, 8 Ciszewskiego St., 02-786, Warsaw, Poland
Bibliografia
  • [1] Cook M. A., Wright G. D., The Past, Present, and Future of Antibiotics, Sci Transl Med, 14(657), 2022, https://doi.org/10.1126/SCITRANSLMED.ABO7793.
  • [2] Ventola C. L., The Antibiotic Resistance Crisis: Part 1: Causes and Threats, PubMed, Pharmacy and Therapeutics, 40, 4, 2015, 277-283.
  • [3] Sengupta S., Chattopadhyay M. K., Grossart H. P., The Multifaceted Roles of Antibiotics and Antibiotic Resistance in Nature, Front Microbiol, 4, 47, 2013, 38490, https://doi.org/10.3389/FMICB.2013.00047/PDF.
  • [4] Aminov R. I., The Role of Antibiotics and Antibiotic Resistance in Nature, Environ Microbiol, 11, 12, 2009, 2970-2988, https://doi.org/10.1111/J.1462-2920.2009.01972.X .
  • [5] Khare T., Anand U., Dey A., Assaraf Y. G., Chen Z. S., Liu Z., Kumar V., Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens, Front Pharmacol, 12, 2021, 720726, https://doi.org/10.3389/FPHAR.2021.720726/PDF.
  • [6] Asenjo A., Oteo-Iglesias J., Alós J.-I., What’s New in Mechanisms of Antibiotic Resistance in Bacteria of Clinical Origin?, Enfermedades Infecciosas y Microbiologia Clinica (English ed.), 39 (Suppl. 1), 2021, 291-299, https://doi.org/10.1016/J.EIMCE.2020.02.017.
  • [7] Jadimurthy R., Mayegowda S. B., Nayak S. C., Mohan C. D., Rangappa K. S., Escaping Mechanisms of ESKAPE Pathogens from Antibiotics and Their Targeting by Natural Compounds, Biotechnology Reports, 34, 2, 2022, e00728, https://doi.org/10.1016/J.BTRE.2022.E00728.
  • [8] Muteeb G., Nanotechnology - A Light of Hope for Combating Antibiotic Resistance, Microorganisms, 11, 6, 2023, 1489, https://doi.org/10.3390/MICROORGANISMS11061489.
  • [9] Dutt Y., Pandey R. P., Dutt M., Gupta A., Vibhuti A., Vidic J., Raj V. S., Chang C. M., Priyadarshini A., Therapeutic Applications of Nanobiotechnology, Journal of Nanobiotechnology, 21, 1, 2023, 1-32, https://doi.org/10.1186/S12951-023-01909-Z.
  • [10] Joseph T. M., Kar Mahapatra D., Esmaeili A., Piszczyk Ł., Hasanin M. S., Kattali M., Haponiuk J., Thomas S., Nanoparticles: Taking a Unique Position in Medicine, Nanomaterials, 13, 3, 2023, 574, https://doi.org/10.3390/NANO13030574.
  • [11] Thiruvengadathan R., Korampally V., Ghosh A., Chanda N., Gangopadhyay K., Gangopadhyay S., Nanomaterial Processing Using Self-Assembly-Bottom-up Chemical and Biological Approaches, Reports on Progress in Physics, 76, 2013, 066501, https://doi.org/10.1088/0034-4885/76/6/066501.
  • [12] Mukherji S., Bharti S., Shukla G., Mukherji S., Synthesis and Characterization of Size- and Shape-Controlled Silver Nanoparticles, Physical Sciences Reviews, 4, 1, 2018, https://doi.org/10.1515/PSR-2017-0082/ASSET/GRAPHIC/J_PSR-2017-0082_FIG_004.JPG.
  • [13] Ealias A. M., Saravanakumar M. P., A Review on the Classification, Characterisation, Synthesis of Nanoparticles and Their Application, IOP Conf Ser Mater Sci Eng, 263, 3, 2017, 032019, https://doi.org/10.1088/1757-899X/263/3/032019.
  • [14] Naikoo G. A., Mustaqeem M., Hassan I. U., Awan T., Arshad F., Salim H., Qurashi A., Bioinspired and Green Synthesis of Nanoparticles from Plant Extracts with Antiviral and Antimicrobial Properties: A Critical Review, Journal of Saudi Chemical Society, 25, 1, 2021, 101304, https://doi.org/10.1016/J.JSCS.2021.101304.
  • [15] Knurek J., Buchaj A., Garbacz M., Synteza nanocząstek srebra przy użyciu ekstraktów roślinnych [Synthesis of Silver Nanoparticles Using Plant Extracts], IOŚ. 22, 1, 2018, 63-74, https://doi.org/10.17512/ios.2019.1.6.
  • [16] Yasir M., Singh J., Tripathi M. K., Singh P., Shrivastava R., Green Synthesis of Silver Nanoparticles Using Leaf Extract of Common Arrowhead Houseplant and Its Anticandidal Activity, Pharmacogn. Mag., 13, 52, 2018, 840-844, https://doi.org/10.4103/PM.PM_226_17.
  • [17] Vishwanath R., Negi B., Conventional and Green Methods of Synthesis of Silver Nanoparticles and Their Antimicrobial Properties, Current Research in Green and Sustainable Chemistry, 4, 4, 2021, 100205, https://doi.org/10.1016/J.CRGSC.2021.100205.
  • [18] Jia B., Mei Y., Cheng L., Zhou J., Zhang L., Preparation of Copper Nanoparticles Coated Cellulose Films with Antibacterial Properties through One-Step Reduction, ACS Appl. Mater. Interfaces, 4, 6, 2012, 2897-2902, https://doi.org/10.1021/AM3007609.
  • [19] Rigo C., Ferroni L., Tocco I., Roman M., Munivrana I., Gardin C., Cairns W. R. L., Vindigni V., Azzena B., Barbante C. et al., Active Silver Nanoparticles for Wound Healing, International Journal of Molecular Sciences, 14, 3, 2013, 4817-4840, https://doi.org/10.3390/IJMS14034817.
  • [20] Yin I. X., Zhang J., Zhao I. S., Mei M. L., Li Q., Chu C. H., The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry, Int. J. Nanomedicine, 15, 2020, 2555-2562, https://doi.org/10.2147/IJN.S246764.
  • [21] Kim K. J., Sung W. S., Suh B. K., Moon S. K., Choi J. S., Kim J. G., Lee D. G., Antifungal Activity and Mode of Action of Silver Nano-Particles on Candida Albicans, BioMetals, 22, 2, 2008, 235-242, https://doi.org/10.1007/S10534-008-9159-2/FIGURES/5.
  • [22] Lemire J. A., Harrison J. J., Turner R. J., Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications, Nature Reviews Microbiology, 11, 6, 2013, 371-384, https://doi.org/10.1038/nrmicro3028.
  • [23] Beyth N., Houri-Haddad Y., Domb A., Khan W., Hazan R., Alternative Antimicrobial Approach: Nano-Antimicrobial Materials, Evidence-Based Complementary and Alternative Medicine, 9, 2015, https://doi.org/10.1155/2015/246012.
  • [24] Ren G., Hu D., Cheng E. W. C., Vargas-Reus M. A., Reip P., Allaker R. P., Characterisation of Copper Oxide Nanoparticles for Antimicrobial Applications, Int. J. Antimicrob. Agents, 33, 6, 2009, 587-590, https://doi.org/10.1016/J.IJANTIMICAG.2008.12.004.
  • [25] Zhang X. F., Liu Z. G., Shen W., Gurunathan S., Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches, International Journal of Molecular Sciences, 17, 9, 2016, 1534, https://doi.org/10.3390/IJMS17091534.
  • [26] Lin Y., Genzer J., Li W., Qiao R., Dickey M. D., Tang S. Y., Sonication-Enabled Rapid Production of Stable Liquid Metal Nanoparticles Grafted with Poly(1-Octadecene-Alt-Maleic Anhydride) in Aqueous Solutions, Nanoscale, 10, 42, 2018, 19871-19878, https://doi.org/10.1039/C8NR05600E.
  • [27] Xu H., Thomas R. K., Penfold J., Li P. X., Ma K., Welbourne R. J. L., Roberts D. W., Petkov J. T., The Impact of Electrolyte on the Adsorption of the Anionic Surfactant Methyl Ester Sulfonate at the Air-Solution Interface: Surface Multilayer Formation, J. Colloid. Interface Sci., 512, 2018, 231-238, https://doi.org/10.1016/J.JCIS.2017.10.064.
  • [28] Adeleye A. S., Pokhrel S., Mädler L., Keller A. A., Influence of Nanoparticle Doping on the Colloidal Stability and Toxicity of Copper Oxide Nanoparticles in Synthetic and Natural Waters, Water Res, 132, 21, 2018, 12-22, https://doi.org/10.1016/J.WATRES.2017.12.069.
  • [29] Usman M. S., El Zowalaty M. E., Shameli K., Zainuddin N., Salama M., Ibrahim N. A., Synthesis, Characterization, and Antimicrobial Properties of Copper Nanoparticles, Int J Nanomedicine, 8, 2013, 4467-4479, https://doi.org/10.2147/IJN.S50837.
  • [30] Jalal M., Ansari M. A., Alzohairy M. A., Ali S. G., Khan H. M., Almatroudi A., Raees K., Biosynthesis of Silver Nanoparticles from Oropharyngeal Candida Glabrata Isolates and Their Antimicrobial Activity against Clinical Strains of Bacteria and Fungi, Nanomaterials, 8, 8, 2018, 586, https://doi.org/10.3390/NANO8080586.
  • [31] Motrenko M., Lange A., Kalińska A., Gołębiewski M., Kunowska-Slósarz M., Nasiłowska B., Czwartos J., Skrzeczanowski W., Orzeszko-Rywka A., Jagielski T., Hotowy A., Wierzbicki M., Jaworski S., Green Nanoparticle Synthesis in the Application of Non-Bacterial Mastitis in Cattle, Molecules, 6, 30, 2025, 1369, https://doi.org/10.3390/MOLECULES30061369/S1.
  • [32] Raffi M., Mehrwan S., Bhatti T. M., Akhter J. I., Hameed A., Yawar W., Ul Hasan M. M., Investigations into the Antibacterial Behavior of Copper Nanoparticles against Escherichia Coli, Ann Microbiol, 60, 1, 2010, 75-80, https://doi.org/10.1007/S13213-010-0015-6/FIGURES/6.
  • [33] Tamayo L. A., Zapata P. A., Vejar N. D., Azócar M. I., Gulppi M. A., Zhou X., Thompson G. E., Rabagliati F. M., Páez M. A., Release of Silver and Copper Nanoparticles from Polyethylene Nanocomposites and Their Penetration into Listeria Monocytogenes, Materials Science and Engineering: C, 40, 2014, 24-31, https://doi.org/10.1016/J.MSEC.2014.03.037.
  • [34] Ruparelia J. P., Chatterjee A. K., Duttagupta S.P ., Mukherji S., Strain Specificity in Antimicrobial Activity of Silver and Copper Nanoparticles, Acta Biomaterialia, 4, 3, 2008, 707-716, https://doi.org/10.1016/J.ACTBIO.2007.11.006.
  • [35] Radzig M. A., Nadtochenko V. A., Koksharova O. A., Kiwi J., Lipasova V. A., Khmel I. A., Antibacterial Effects of Silver Nanoparticles on Gram-Negative Bacteria: Influence on the Growth and Biofilms Formation, Mechanisms of Action, Colloids Surf. B Biointerfaces, 102, 2013, 300-306, https://doi.org/10.1016/J.COLSURFB.2012.07.039.
  • [36] Ishida T., Antibacterial Mechanism of Ag+ Ions for Bacteriolyses of Bacterial Cell Walls via Peptidoglycan Autolysins, and DNA Damages, MOJ Toxicology, 4, 5, 2018, https://doi. org/10.15406/MOJT.2018.04.00125.
  • [37] Radhakrishnan V. S., Mudiam M. K. R., Kumar M., Dwivedi S. P., Singh S. P., Prasad T., Silver Nanoparticles Induced Alterations in Multiple Cellular Targets, Which Are Critical for Drug Susceptibilities and Pathogenicity in Fungal Pathogen (Candida Albicans), Int. J. Nanomedicine, 13, 2018, 2647-2663, https://doi.org/10.2147/IJN.S150648.
  • [38] Ma X., Zhou S., Xu X., Du Q., Copper-Containing Nanoparticles: Mechanism of Antimicrobial Effect and Application in Dentistry-a Narrative Review, Front Surg, 9, 2022, https://doi.org/10.3389/FSURG.2022.905892/FULL.
  • [39] Zain N. M., Stapley A. G. F., Shama G., Green Synthesis of Silver and Copper Nanoparticles Using Ascorbic Acid and Chitosan for Antimicrobial Applications, Carbohydrate Polymers, 112, 2014, 195-202, https://doi.org/10.1016/J.CARBPOL.2014.05.081.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05e36bbe-193e-48d4-afa7-c609ec18aa4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.