
45

A TESTING ENVIRONMENT

FOR DISTRIBUTED SYSTEMS

Marcin Sztandarski, Grzegorz Sowa,
Piotr Goetzen, Alina Marchlewska

IT Institute, Academy of Management, Lodz, Poland
marcin.sztandarski@gmail.com, (gsowa, goetzen, amarchlewska)@swspiz.pl

Abstract

The article presents the basics of modern software testing theory. Testing
automation and the integration of testing into code writing will be examined in
detail, and concept of a testing environment for distributed systems will be
introduced.

Key words: distributed systems, software testing, testing automation,
test-driven development

1 Introduction

The architecture of modern software systems is complex as most systems 
are distributed systems. Testing this type of system is a fairly complicated
process, due to the various system platforms on which the software is based,
the lack of the specification of the interfaces between system modules, and the
difficulty in preparing the whole environment of the distributed system.

Over time, a variety of tests and testing methods have appeared. Along
with the development of agile methodologies, testing has gone hand in hand
with software creation from its earliest stages.

2 Software testing theory

2.1 Quality management and software system testing

Institutions that choose distributed systems tend to be, for example, finan-
cial organisations or large logistics companies. These systems are expected to
function reliably and above all in line with their specifications. Quality man-
agement is essential, and one part of this is testing. In quality engineering



Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

46

interdisciplinary methods are used. Practical skills in the business processes
which the system is designed to serve are needed [2]. The testing is aimed at
component systems of varying granularity– individual classes, components 
and the whole system are tested. [3]

Figure 1. Typical test range (on a basis of [3])

Test design generally includes the following steps:
− analysing and modelling the expected system behaviour
− designing test variants (entry and exit)
− designing test variants arising from structural analysis and other error de-

tection methods (e.g. heuristics)
− stating the expected results for each test variant.

Several models are used to cope with the complexity of the system. Each
model describes a particular type of test and has a particular aim.



A Testing Environment for ...

47

2.2 Test automation

Testing a large amount of software creates the need for test automation. An 
automatic test systems allows entry data to be applied and for test results to be
verified. Such systems must be compatible with the interfaces and infrastruc-
ture of the system being tested. Test automation systems ensure that tests can
be carried out repeatedly. This facilitates regressive tests, for example, which
are generally carried out after the introduction of a repair or new function.
Although it is estimated that testers find only 15% of errors through auto-
mated tests [6], the most interesting attribute of this kind of test is its repeat-
ability, which allows the test procedure to be generated in a different hard-
ware platform, for example, or in another configuration.

2.3 Black and white box testing

There are two ways to design tests. If the designer only takes the entry and
exit specifications of the system into account, then the test is a black box test.
For example, testing a log-in box with two fields: “user” and “password” and
the “log in” button. The tester enters data according to the specifications of
the test into the appropriate fields, and then checks the effect of pressing the
button. In the case of this test, the internal data processing is not relevant –
only the exit data obtained for specific entry data are checked [10].

The opposite approach in known as white-box testing. Here, the internal
structure of the system is taken into account. The steering path routes in the 
system being tested are analysed, and also solution implementation methods.
In the case of the log-in window, the internal components and the interaction 
between them will be checked.

It is increasingly common for a distributed system to be rolled out by many
teams simultaneously, with solutions being delivered at different points in 
time. Part of the system maybe created outside the main organisation. White-
box tests are designed only for the parts of the system, which are implemented
by the designer, whereas complex black-box test are the best means of quality
control in cases when we ourselves have not created the code.

2.4 Typical software development processes and testing

Generally speaking, the process of creating software is based on the trans-
lation of information, such as information about a business process, into
source code. This information is transferred during the following stages of
software creation [8]:



Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

48

− Needs establishment: the user (the sponsor of the project), working with an
analyst, defines what is expected of the system that is to be created. These 
expectations are written down as the formal aims of the project.

− Analysis and description of goals: the details are agreed upon and the rela-
tionship between each goal is specified, taking into account priorities, af-
fordability, and any compromises.

− Creation of external specifications: system elements are described as 
“black boxes”, in other words only interfaces and the interaction with the
user (and in the case of batch systems, entry and exit specifications) are 
specified.

− Creation of the project structure system structure: the system is divided
into a series of elements of decreasing granularity. In other words, it is di-
vided into programs, components, etc, and interfaces are also defined.

− Functional specification of modules and their interfaces: the function of
each module, the relationships between modules and working guidelines
are established.

− Exact specification of each module, defining the interface and functional
elements.

− Creation of source code.

Incorrect transfer of information can occur at any of the above stages. In
order to eliminate mistakes, testing processes are used simultaneously with
each stage. Each testing stage is responsible for eliminating a particular kind
of mistake. The relationship between software creation processes and testing
processes is often represented as a “V” shape, where the series of stages asso-
ciated with creating the system are on the left side, and the corresponding tests 
on the other. The “V” model, which is an extension of the typical waterfall
model, can be adapted to methods, where an iterant approach is used, as well
as to agile methodologies. In this case, the route through each stage is com-
pleted for each iteration. This approach improves the reliability of each stage
of system creation, as each particular type of mistake is eliminated as soon as 
it might appear. Thus, when the external specification of the system is being
tested, functional testing is carried out rather than broad system testing. The 
tester focuses on mistakes in functionality implementation, and not on, for
example, data processing efficiency.

The test structure along with the corresponding stages is as follows:
− Acceptance testing at the needs establishment stage. This type of test as-

sesses to what extent the system being tested corresponds to the expecta-
tions set out in the specification. Often this stage of testing is carried out
by the client’s own team of testers. Functional as well as non-functional 
expectations are tested (e.g. efficiency).



A Testing Environment for ...

49

− Systems testing at the goals description stage. This kind of test is essential
due to the face that certain characteristics and functions of the system are
only visible when the software is treated as a whole. The difficulty of de-
signing this type of test is due to the fact that the document which de-
scribes the project aims is a general one, and so cannot provide specific 
systems tests. Therefore, user documentation is also used when designing
systems tests.

There are several categories of system tests which focus only on specific
aspects of the system. They are not used in every system, however.
− Facility testing – which tests their compatibility with the established aims.
− Volume testing – which checks how the system copes with a large amount

of entry data.
− Stress testing - which assesses the system’s ability to process a large

amount of data in a short time.
− Usability testing – which checks the how user-friendly the interface is.
− Safety testing (data protection) checks, among other things, whether the

system is vulnerable to data leakage.
− Effectiveness testing assesses how the system copes with varying de-

mands, i.e.: whether the time it takes the system to produce an answer in a 
given configuration matches the estimated times.

− Configuration testing checks the system in terms of its ability to cope with
different equipment configurations and environments (for example differ-
ent browsers in the case of internet applications.)

− Compatibility and conversion testing checks whether data can be con-
verted from one version of the system to another (for example, whether da-
ta can migrate from previous versions) or whether the system can work in
so-called compatibility mode.

− Installation procedure testing aims to identify mistakes in the software
installation process.

− Reliability testing establishes whether the system can carry out given func-
tions in particular conditions.

− Emergency function testing checks how resilient the system is in case of
breakdown. Most frequently, the average time it will take for the system to
recover after a breakdown is estimated (Mean Time To Recovery).

− Service testing involves checking to what extent service and conservation 
of the system are possible. For example, the test establishes whether a sta-
tus report can be produced.

− Documentation testing aims to eliminate ambiguity, and the documentation 
is assessed for completeness and detail, among other aspects.



Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

50

− External specification functional testing identifies any discrepancies be-
tween the expected behaviour of the system from the perspective of the us-
er and its actual behaviour.

The testing processes listed above are very much horizontal tests. In sub-
sequent development stages, tests at the level of individual units are used, as
follows:
− Integration testing aims to identify defects in interfaces and in the interac-

tion between units.
− Unit (module) testing.

2.5 Units testing

Program units are part of the program code, in the form of sub-programs,
classes or methods. Units consist of the smallest element of the system which
it is worthwhile testing. Initiating testing while writing a unit, for example a
class, has a host of benefits for the programmer. The specification of how the 
code behaves in tests will significantly facilitate the analysis of the code by
other programmers. Refactorisation is safe – the programmer does not worry 
that he or she will change the way the code works when changing the code,
creating a mistake [9]. It is important that the programmer is expected to take
care over the project: dividing the code into parts, according to which particu-
lar unit they are intended for. Unit tests which have had their connection with
other parts of the system removed can be carried out simultaneously.

Michael Feathers [4] outlines certain desirable characteristics of unit tests:
− Unit tests should work fast,
− Unit tests should not communicate with the database,
− Unit tests should not used network communication,
− Unit tests should not use the file system,
− The programmer cannot carry out additional preparation procedures in

order to carry out a unit test. Programmers sometimes introduce additional
connections into unit tests, for example a connection with the data base,
which turns the unit test into an integrative test.

Creating unit tests requires a well designed system, in which there are not
many connections between modules. This enables classes and methods to be 
tested independently of each other. One method of isolating classes is to use 
mock objects, which does, however, increase the complexity of the system.
Another method is appropriate system design and application, for example,
dependency injection [11].



A Testing Environment for ...

51

2.6 An outline of test-driven development

Test-driven development (TDD) is a software development system which
consists of three steps: creating a test, writing an appropriate code, refactorisa-
tion. This cycle is often known as the “red-green-refactor mantra” among
programmers who use TDD, which is due to the behaviour of TDD support
tools, in which red means that the test produced a negative result, and green
that it produced a positive result. The most important, seemingly simple rule
of TDD is the golden rule: never write a new functionality before you have
written a test, which produces a different result than expected (red).

Code writing using TDD consists of the following steps [4]:
1. Choosing the task and creating the test – the programmer starts writing a 

testing code which specifies the desired behaviour of, for example, a cer-
tain method. Of course, the code is not compiled, as there is no implemen-
tation code.

2. In the next step (represented as red), the minimum implementation code
necessary for the particular class/method being tested is created, with the
aim of enabling compilation. The testing tools are marked as red.

3. Writing the correct code (represented as green) means implementing the 
method in such a way, as to fulfil the requirements of the test. This step
lasts up until the point when the colour green appears.

4. Refactorisation, which means modifying the structure of the code that has
been tested without changing its functionality. These changes generally
aim to improve the code’s readability.

It is very important to note that steps 1-4 are carried out cyclically (even
multiple times an hour), whereas completing one cycle gives the programmer
immediate feedback. Another advantage of the TDD technique is that the
programmer focuses on one task – either code writing or refactorisation.
Moreover, applying this procedure fully in a project gives the programmer a
sense of security when introducing changes in the code later on, since the base
code is covered by tests. This technique is also suitable for legacy application.
Both bug fixes in existing code and changes introduced to existing functional-
ities should begin with test writing [1].

2.7 The effectiveness of test-driven development

The principal benefit of TDD is the assurance that any mistakes made dur-
ing the implementation of corrections or new functionalities will not introduce
hidden errors. The “golden rule of TDD” ensures that every functionality has 
its own test. There is also a collection of regressive tests which allow the pro-
gram to be retested in order to identify newly introduced mistakes. Following



Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

52

the TDD rules generally leads to hundreds of tests a month and thousands of
tests a year being carried out, which in practice cover more than 90% of pro-
duction code [7]. Tests from which dependencies have been removed should 
only take a few minutes, even if there are a few thousand of them. This means
that the programmer can check the effects of introducing a correction on the
rest of the code within this short time. Similarly with refactorisation, the pro-
grammer is not afraid of making changes even in “messy” code (for example
code in which abstractions are mixed, such as business rules and limited ac-
cess to data) since it is practically impossible to “break” the code. Unit tests 
are also the most readily comprehensible documentation for programmers,
since they are written in the same language as the system is created in.

In 2007, Ron Jeffries and Grigori Melnik [5] presented the results of re-
search into Test-Driven Development techniques in the IT industry. Regard-
less of the benchmarks used, all the research results indicated that product
quality increased significantly.

2.8 The problem of units integration

During unit testing, units are tested in isolation from other elements, which 
means that their code does not establish a connection with „the outside
world”. The units being tested do not communicate through the network, do
not save files, do not go beyond the boundaries of the process. Unit testing
should then be expanded into integrative testing. Various strategies are used to
integrate modules: growth integration, increasing and decreasing integration
[11]. The purpose of integrative testing is to identify defects in the interface
and in interactions between units. Units in complex systems (and also distrib-
uted systems) give access to the interface or carry out calls for methods made 
accessible by other units and cannot be tested individually. It can be difficult 
to test interaction, because certain parts of the system may not yet be accessi-
ble.

In order to resolve this, environmental elements which replace the sur-
rounding modules are used:
− The driver unit – calls to the tested unit are carried out form the level of

the driver.
− The stub unit – creates access to the interface of the unit, whose methods 

are called up.

Figure 2 shows models of the configuration of test units for two examples
of distributed systems:

System I illustrates an imaginary configuration for complex tests where in-
teraction is taking place between three units (unit 3 has been replaced by an
element which gives access to the interface of unit 2.)



A Testing Environment for ...

53

System II is an integrative test which checks the interaction of module A
with the outside world. The driver of module A enables calling up the meth-
ods of interface A, whilst the element of module B enables carrying out calls
in the range of module B’s interface.

Figure 2. Model of configuration of units in integrative tests (complex texts) for ex-
amples of distributed systems. Source: own design.

3 System concept for testing distributed systems

3.1 High-level design architecture

High-level design describes components and their functions in the process
of testing distributed systems. Only significant aspects will be discussed here.
Figure 3 illustrates the main subsystems and their communications.



Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

54

Figure 3. A diagram of the testing environment architecture of distributed systems.
Source: own design.

3.2 The concept of test fixture

A test fixture is an agreed system status which ensures that test conditions 
are repeatable. The test fixture is created by the test environment. In practice,
this is a service steered from the level of the status control agent. The test
fixture is created by the system being tested along with the adapter.



A Testing Environment for ...

55

3.3 What is required of the system being tested

In order for the system to be testable, two conditions must be met:
− The communication interface must be separated from the outer compo-

nents which the tested system communicates with
− The data adapter must be completed.

3.4 The role of components (of subsystems)

The runner subsystem of distributed testing is a component, which has the
function of communicating with the system being tested in order to initiate the
given command, forcing shut down of the testing procedure, or dealing with a
system failure.

The data adapter is a component which enables the entry data transferred
to the system to be read, the exit data to be stored and the system status to be
dumped.

The status, test and synchronisation controller is a subsystem responsible 
for the co-ordination of the whole environment and synchronizing tests. Status
co-ordination involves sending commands to the status control agent. The 
commands are sent according to the content of the test fixtures. The controller
also sends test signals to the runner controlling the system being tested.

The status control agent carries out commands to set up a service or an
imitation service in a particular way.

The remote unit test control agent.
System imitation is an external service, which the system being tested de-

pends on.
The repository of tests and test scenarios is an application which allows 

test scenarios and reports of tests that have been carried out to be collected.

4 Case study

4.1 The concept of the Long Running Process Server framework

A high-level design test for a system which supports key business proc-
esses is described below. Testing this system depends on the availability of
many components and external systems.

The Long Running Process Server framework is a collection of compo-
nents and interfaces installed in business applications which demand service
for processes that are not synchronized. Processes that are not synchronized
allow the application to send a command for a long-term task to another ma-
chine, and then to continue functioning without waiting for the result. It is
also possible to finish the command process and memorize the task handler,



Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

56

which would make it possible to refer to the result after the next command 
process has been initiated (or alternatively to delegate the reading of results to
another process).

4.2 Architecture of the Long Running Process Server framework

A description of the high-level components needs to be added to the
framework concept described below in order for the testing scenario to be
clear.

Figure 4. Architecture of the Long Running Process Server framework. Source: own 
design.

The structure and organization of the server are as follows. The Long Run-
ning Process Server (executive server) is a service for the Windows operating
system. When the service is switched on/started, a configuration which identi-
fies plugins is loaded, with a task executive element. After the plugins are 
loaded, the service process checks whether there are any tasks to be per-
formed in the queue, and if so begins to process them according to the allotted 
task ordering algorithm. Both the executive parameters and the task process
exits are consolidated in line with process persistence; in this implementation
these are XML communications saved in the MS SQL Server base. The ser-



A Testing Environment for ...

57

vice also opens up the interface for communication with the broker process.
The executive server deals with all connections with the outside world for the
tasks requested.

The Long Running Process Service Client Broker is a service for the Win-
dows operating system which is a bridge between the Long Running Process
Server and client applications. In practice, the broker is dedicated to one par-
ticular application and only serves specific tasks. The component is made up
of the self-hosted Windows Communication Foundation Server, which serves
different kinds of communications with clients, and a functional part which
supports the loading of plugins for particular tasks. The broker is responsible
for passing on instructions, carrying out tasks with entrance instructions and
for answering questions about their status (and enabling results to be re-
corded.) The service makes the service accessible for client applications in the
form of Remote Procedure Call requests. The Long Running Process Server
can serve requests from many brokers and many applications, which means
that the brokers can be specialized in terms of function.

Client applications are processes which have a shorter life cycle than the
tasks requested by them. They are generally made up of a presentation layer
and a layer which is responsible for communication with the broker. The
presentation layer is built from component provided by the framework library.

4.3 Examples of business system testing scenarios, based on the Long
Running Process Server.

The scenarios described below are examples of integrated systems testing
which supports business processes in financial institutions offering clients 
credit, credit cards and medical care/insurance. There is often a considerable 
delay in processing tasks which require communication with outside systems,
due to business working conditions such as the need for a form to be ap-
proved, or the availability of outside services, and so these tasks are trans-
ferred to the Long Running Process Server by the Window application opera-
tor. The correct implementation of the business process completion can be 
found in the BusinessTaskDisposal component.



Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

58

Figure 5. View of the BusinessTaskDisposal component. Source: own design.

The component that carries out tasks through the use of the Separated In-
terface model uses the potential of the external implementations of servicing
client account services (IAccountProvider, IAccountAmender) and data con-
solidation (IDataPersistence). This approach also allows the stubs of any ser-
vice to be used and focus tests to be carried out on only one service. The de-
pendence on IDataPersistence is due to the fact that the Long Running Process
Server consolidates entry data, exit data and the task status. Another important
dependency is the ProcessLogger class, which consolidates data related to
communication about the process status (this data is used to diagnose and
display the status on the client side). The testing environment configuration in
the case of each hub is made up of: the status control agent, the remote test
control agent and the imitation of certain dependent services, which the task
processes communicate with.

Smoke test scenario (preliminary test)
The preliminary test checks whether the system is ready for further, de-

tailed tests to be carried out.
Test scenario 1 – read status of all system hubs for the configuration that

has been loaded, expected result – status {OK} for each hub.
Test scenario 2 – load imitation of every dependency for BusinessTask-

Disposal, and then carry out the given remote functional test.



A Testing Environment for ...

59

Regressive test scenarios for given tasks
The aim of regressive tests is to ensure that no new mistakes have been in-

troduced when making changes in the software. This test consists of repeating
tests carried out before the changes were introduced.

Test scenario: load the regression test baseline set which contains the test
examples that were saved along with the test fixtures, run the automated tests,
check the results.

End-to-end test scenario
The aim of end-to-end tests is to test business transactions at the level of

their components, i.e. to ensure that all components are working together cor-
rectly and processing data correcting (at the level of the business process).

Test scenario for a single end-to-end test:
1. Set the hubs to a status with no imitations.
2. Carry out a preliminary test for each hub which is part of the process
3. Transfer data to be processed on the client side
4. Run the test
5. Check the processing results for each hub.

Test scenario for functional tests for business processes which are carried
out on the server side

During functional tests the implementation of the business function is
tested (a black-box test).

Test scenario:
1. Set the dependent service hubs
2. Set the service statuses
3. Load the entry data
4. Run the test
5. Compare the actual and expected exit data

5 Conclusion

5.1 Complexity

Testing distributed systems is complicated. The behaviour of the network
is to some extent unpredictable and preparing the testing environment is diffi-
cult. The test designer can only create an approximation of the conditions in
which the system is going to function. Carrying out tests related to subsystem
communication in distributed systems is often very expensive, because an
organization might only have one production environment serving mass



Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

60

communication with many clients at their disposal. Another problem is the 
question of how to simulate the behaviour of hundreds or thousands of clients.
Moreover, network technologies are constantly being improved, while the life
cycle of distributed systems is relatively long, which means that these systems
have to function in a network environment which will be ten or more times
faster in a few years.

5.2 Safety

The role of safety testing in distributed systems is increasingly important.
The characteristics of distributed systems, their division into many subsys-
tems, leads to an increased risk of data leakage. Testing the safety of the sys-
tem as a whole at the end of the project, i.e. during the final integration, may
not be sufficient, since repairing problems at this stage could be very expen-
sive. Safety is a factor which should be clearly defined at the beginning of the
project when the client’s expectations of the system are set out. Safety testing
begins with checking it at the level of components, and ends with testing at
the level of the final integration and acceptance tests.

5.3 Distribution

The distribution of the project may extend beyond the boundaries of the
organization. Many companies benefit from outsourcing and off-shoring. The 
quality of a system which has been prepared outside the organization must be 
measured. The test designer has to deal with the difficulties of constantly ex-
panding acceptance tests which check both functional and non-functional
characteristics. One method is the introduction of iterative methodologies
which support such an approach. Creating distributed systems in a non-
iterative way (for example the waterfall model) is too risky, as problems be-
come apparent at the end – during the integration of the whole system.

5.4 Heterogeneity of environments

Designing tests for distributed systems requires a knowledge of the charac-
teristics of many environments: equipment platforms, operating systems, de-
buggers. Often distributed systems are built with the aim of adapting old sys-
tems to new business conditions. One example would be any kind of banking
system, which display part of their functionality in client systems like home
banking. Therefore, an architect designing tests for this kind of system needs
to know the characteristics of both the new and the old parts of the systems
(e.g. a banking system such as core).



A Testing Environment for ...

61

5.5 Automation

In order to automate tests for distributed systems, they need to be built in a
particular way. In practice, this means, for example, adding a thin interface 
layer between the software containing the use interface and the layer below
(for example, the business layer). An approach called hexagonal architecture 
is used, which means adding a range of adapters to the system which allow,
for example, interaction with the user to be replaced with a range of auto-
mated API calls.

5.6 Synchronisation

In distributed systems, tasks are carried out in parallel and sometimes the 
processing cannot be done by a single machine. Tasks carried out on many 
different machines influence each other constantly, which means that they
must be synchronized. This may cause errors that are difficult to diagnose, for
example the appearance of blockages (in the file system as well as in the data-
base).

Summary

The above attempt to design a testing environment for distributed systems
aimed to solve a particular problem – testing an asynchronistic task process-
ing server. The high-level design presented here was a very simplified one. A
detailed design for the status controller component, tests and synchronization
will be a considerable challenge. The flexibility of the system and ease of
testing will depend on this implementation. The way that the system deals
with unforeseen circumstances such as breakdowns, transaction cancellations 
or the peculiarities/characteristics of network communication will be signifi-
cant.

References

1. Baley K., Belcham D., Manning 2010, Brownfield Application Development in 
.NET, , p.105 

2. Bereza-Jarociński B., Szomański B., Helion 2009, Inżynieria Oprogramowania.
Jak zapewnić jakość tworzonym aplikacjom, p. 69.

3. Binder V. R., WNT 2003, Testowanie systemów obiektowych, p. 48.

4. Feathers M., 2012, Working Effectively with Legacy Code,
http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegac
yCode.pdf, downloaded Oct the 22



Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

62

5. Jeffries R., Melnik G., 2007, IEEE SOFTWARE, Professionalism and Test-
Driven Development, May/June 2007, IEEE Computer Society, p. 28

6. Kaner C., Bach J., Pettichord B., Wiley 2002, Lessons Learned in Software
Testing: A Context-Driven Approach, p. 101.

7. Martin R., 2007, IEEE SOFTWARE, Professionalism and Test-Driven Devel-
opment, May/June 2007, IEEE Computer Society, p. 33.

8. Myers G., Sandler C., Badgett T., Thomas T., Helion 2005, Sztuka testowania 
oprogramowania, p. 151.

9. Osherove R., 2009, The Art of Unit Testing, Manning, p. 55

10. Shaefer H., 2012, What a Tester Should Know, even After Midnight,
http://www.sjsi.org/webgears/files/sjsi/File/tester/tester_5.pdf, downloaded Oct
the 22, p. 40

11. Shore J., Warden S., Helion 2008, Agile Development. Filozofia programowania 
zwinnego, p. 354


