PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Constraints on ore formation conditions at the Mazra’eh Shadi epithermal deposit, NE Tabriz, Iran : evidences from geochemistry, sulphur isotope, quartz textures and fluid inclusion studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Mazra'eh Shadi deposit is one of the most representative gold deposits in the Ahar-Arasbaran Belt. The main minerals are galena, sphalerite, pyrite and chalcopyrite. Concentrations of Au-Ag occur mainly within quartz veins. Five textures (crustiform, comb, microcrystalline, cockade, and mosaic) are distinguished by field reconnaissance and hand specimen observations. The δ34S values suggest an increasing role of meteoric water from the deepest levels to the shallow level and surface. Fluid inclusion data show that the mineralisation at the Mazra'eh Shadi deposit can be classified as a volcanic-rock-hosted intermediate-sulphidation epithermal deposit. Fluid inclusions in vein quartz can be distinctly divided into three types according to interpretation of petrographic features: intense boiling, gentle boiling and non-boiling conditions. The presence of intense and gentle boiling among different substages at the same level in the Mazra'eh Shadi deposit indicates that the base of the boiling zone likely shifted upward and downward during vein formation. The concentrations of Au-Ag occur mainly within quartz veins in the shallow level with gentle boiling (max. 813 ppb Au) and with intense boiling (max. 2420 ppb Au), whereas lower Au-Ag concentrations are associated with base metal-rich (Pb-Zn) in the deepest levels with non-boiling fluids (max. 52 ppb Au).
Rocznik
Strony
230--247
Opis fizyczny
Bibliogr. 66 poz., fot., rys., tab., wykr.
Twórcy
  • Lorestan University, Faculty of Natural Sciences, Department of Geology, Khoram Abad, Iran
  • Lorestan University, Faculty of Natural Sciences, Department of Geology, Khoram Abad, Iran
  • University of Tabriz, Faculty of Natural Sciences, Department of Earth Sciences, Tabriz, Iran
  • Lorestan University, Faculty of Natural Sciences, Department of Geology, Khoram Abad, Iran
Bibliografia
  • 1. Arribas, Jr. A., 1995. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. Mineralogical Association of Canada Short Course, 23: 419-454.
  • 2. Azizi, H., Jahangiri, H., 2008. Cretaceous subduction - related volcanism in the northern Sanandaj-Sirjan Zone, Iran. Journal of Geodynamics, 45: 178-190.
  • 3. Azizi, H., Moinevaziri, H., 2009. Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. Journal of Geodynamics, 47: 167-179.
  • 4. Bakker, R.J., 1997. Clathrates: computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures. Computers and Geosciences UK, 23: 1-18.
  • 5. Bakker, R.J., 1999. Optimal Interpretation of Microthermometrical Data from Fluid Inclusion, Thermodynamic Modelling and Computer Programming. University Heidelberg, Germany.
  • 6. Barton, P.B., 1991. Ore textures: problems and opportunities: Mineralogical Magazine, 55: 303-315.
  • 7. Berberian, M., King, G.C.P., 1982. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18: 210-265.
  • 8. Blourian, G.H., 1994, Petrology of the tertiary volcanic rocks in the northern of Tehran: M.Sc. thesis, University of Tarbiat Moallem, Tehran, Iran.
  • 9. Bobis, R.E., 1994. A review of the description, classification and origin of quartz textures in low sulphidation epithermal veins. Journal of the Geological Society of the Philippines, 49: 15-39.
  • 10. Bobis, R.E., Jaireth, S., Morrison, G.W., 1995. The anatomy of a Carboniferous epithermal ore shoot at Pajingo, Queensland: Setting, zoning, alteration, and fluid conditions. Economic Geology, 90: 1776-1798.
  • 11. Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57: 683-684.
  • 12. Bodnar, R.J., Lecumberri-Sanchez, P., Moncada, D., Steele-Macinnis, M., 2014. Fluid Inclusions in Hydrothermal Ore Deposits, Treatise on Geochemistry: 119-142. Elsevier Ltd.
  • 13. Brown, K.L., 1986. Gold deposition from geothermal discharges in New Zealand. Economic Geology, 81: 979-983.
  • 14. Brown, P.E., 1989. Flincor: a microcomputer program for the reduction and investigation of fluid-inclusion data. American Mineralogist, 74: 1390-1393.
  • 15. Browne, P.R.L., 1978. Hydrothermal alteration in active geothermal fields. Annual Review of Earth and Planetary Science, 6: 229-250.
  • 16. Calagari, A.A., 2003. Stable isotope (S, O, H and C) studies of the phyllic and potassic-phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran. Journal of Asian Earth Sciences, 21: 767-780.
  • 17. Castor, S.B., Boden, D.R., Henry, C.D., et al., 2003. The Tuscarora Au-Ag district: Eocene volcanic-hosted epithermal deposits in the Carlin gold region, Nevada. Economic Geology, 98: 339-366.
  • 18. Chauvet, A., Bailly, L., Andre, A., Monie, P., Cassard, D., Tajada, F.L., Vargas, J.R., Tuduri, J., 2006. Internal vein texture and vein evoltion of the epithermal Shila-Paula disirict, southern Peru. Mineralium Deposita, 41: 387-410.
  • 19. Christie, A.B., Simpson, M.P., Brathwaite, R.L., Mauk, J.L., Simmons, S.F., 2007. Epithermal Au-Ag and related deposits of the Hauraki goldfield, Coromandel volcanic zone, New Zealand. Economic Geology, 102: 785-816.
  • 20. Craig, J.R., 2001. Ore-mineral textures and the tales they tell. Canadian Mineralogist, 39: 937-956.
  • 21. Daliran, F., Borg, G., Armstrong, R., Vennemann, T., Walther, J., Woodhead, J.D., 2007. Non sulphide zinc deposits, Iran: the hypogene emplacement and supergene modification history of the Angouran zinc deposit, NW-Iran: Series on the Researches on Ore Deposit and Mineral Resources. Report of The German Federal Institute for Geosciences and Natural Resources (BGR), Hannover.
  • 22. Defant, M.J., Drummond, M.S., 1993. Mount St Helens - potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21: 547-550.
  • 23. Dong, G.Y., Zhou, T., 1996. Zoning in the Carboniferous-Lower Permian Cracow epithermal vein system, central Queensland, Australia. Mineralium Deposita, 31: 210-224.
  • 24. Dong, G.Y., Morrison, G., Jaireth, S., 1995. Quartz textures in epithermal veins, Queensland - classification, origin, and implication. Economic Geology, 90: 1841-1856.
  • 25. Dowling, K., Morrison, G.W., 1989. Application of quartz textures to the classification of gold deposits using North Queensland examples. Economic Geology, Monograph, 6: 342-355.
  • 26. Du Bray, E.A., 2014. Geochemical and modal data for igneous rocks associated with epithermal mineral deposits. U.S, Geological Survey Data Series, 875.
  • 27. Du Bray, E.A., 2017. Geochemical characteristics of igneous rocks associated with epithermal mineral deposits - review. Ore Geology Reviews, 80: 767-783.
  • 28. Ebrahimi, S., Alirezaei, S., Pan, Y., 2009. Various epithermal precious metal systems in the Urmieh-Dokhtar magmatic assemblage, Iran. Goldschmidt Conference Abstracts. P. A 318.
  • 29. Ebrahimi, S., Alirezaei, S., Pan, Y., 2011. Geological setting, alteration, and fluid inclusion characteristics of Zaglic and Safikhanloo epithermal gold prospects, NW Iran. Geological Society Special Publications, 350: 133-147.
  • 30. Field, C.W., Fifarek, R.H., 1985. Light stable isotope systematics in epithermal systems. Reviews in Economic Geology, 2: 99-128.
  • 31. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42: 2033-2048.
  • 32. Goldstein, R.H., Reynolds, T.J., 1994. Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course, 31: 199.
  • 33. Götze, J., 2009. Chemistry, textures and physical properties of quartz-geological interpretation and technical application. Mineralogical Magazine, 73: 645-671.
  • 34. Götze, J., Zimmerle, W., 2000. Quartz and silica as guide to provenance in sediments and sedimentary rocks. Contributions to Sedimentary Petrology, 21, Schweizerbart'sche Verlagsbuchhandlung, Nägele and Obermiller, Stuttgart, 91 S.
  • 35. Götze, J., Plötze, M., Fuchs, H., Habermann, D., 1999. Defect structure and luminescence behavior of agate - results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineralogical Magazine, 63: 149-163.
  • 36. Hedenquist, J.W., Arribas, A., Gonzalez-Urien, E., 2000. Exploration for epithermal gold. Reviews in Economic Geology, 13: 245-277.
  • 37. Henley, R.W., McNabb, A., 1978. Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Economic Geology, 73: 1-19.
  • 38. Herrington, R.J., Wilkinson, J.J., 1993. Colloidal gold and silica in meso thermal vein systems. Geology, 21 : 539-542.
  • 39. Jamalia, H., Dilek, Y., Daliranc, F., Yaghubpurd, A., Mehrabid, B., 2010. Metallogeny and tectonic evolution of the Cenozoic Ahar-Arasbaran volcanic belt, northern Iran. International Geology Review, 52: 608-630.
  • 40. John, D.A., 2001. Miocene and early Pliocene epithermal gold-silver deposits in the northern Great Basin, Western United States-characteristics, distribution, and relationship to magmatism. Economic Geology, 96: 1827-1853.
  • 41. Lehmann, K., Berger, A., Götte, T., Ramseyer, K., Wiedenbeck, M., 2009. Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL- and SEMCC- imaging. Mineralogical Magazine, 73: 633-644.
  • 42. Le Maitre, R.W., 2002. Igneous Rocks - a Classification and Glossary of Terms, 2d ed., Cambridge University Press, 236.
  • 43. Liao, S., Chen, S., Deng, X., Ni, P, Zhao, J., Lioa, R., 2014. Fluid Inclusion characteristics and geological significance of the Xiao copper-tin polymetallic deposit in Gejiu, Yunnan Province. Journal of Asian Earth Science, 79: 455-467.
  • 44. Meinert, L.D., Hedenquist, J.W., Satoh, H., Matsuhisa, Y., 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Economic Geology, 98: 147-156.
  • 45. Moncada, D., Mutchler, S., Nieto, A., Reynolds, T.J., Rimstidt, J.D., Bodnar, R.J., 2012. Mineral textures and fluid inclusions petrography of the epithermal Ag-Au deposits at Guanajuato, Mexico: application to exploration. Journal of Geochemical Exploration, 114: 20-35.
  • 46. Moayyed, M., Ameri, A., Vosoughi Abedini, M., 2008. Petrogenesis of Plio-Quaternary basalts in Azarbaijan, NW Iran and comparisons them with similar basalts in the east of Turkey. Iranian Journal of Crystallography and Mineralogy, 16: 327-340.
  • 47. Nabavi, M., 1976. An Introduction to the Geology of Iran (in Persian). Geological Survey of Iran Publication.
  • 48. Nogol-Sadat, 1993. Geology of Iran. Geological Survey of Iran, Iran.
  • 49. Okamoto, A., Saishu, H., Hirano, N., Tsuchiya, N., 2010. Mineralogical and textural variation of silica minerals in hydrothermal flow-through experiments: implications for quartz vein formation. Geochimica et Cosmochimica Acta, 74: 3693-3706.
  • 50. Ohmoto, H., Rye, R.O., 1979. Isotopes of sulfur and carbon. In: Geochemistry of Hydrothermal Ore Deposits (ed. H.L. Barnes): 509-567. Wiley, New York.
  • 51. Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956-983.
  • 52. Radmard, K., Zamanian, H., Hosseinzadeh, M.R., Ahmadi Khalaji, A., 2017. Geochemistry and hydrothermal evolution of ore deposition at the Mazra'eh Shadi -Hizehjan precious and base metal deposit, northeastern Tabriz, Iran. Journal of Mineralogy and Geochemistry, 194: 227-250.
  • 53. Richards, J., 1995. Alkalic-type epithermal gold deposits - a revview. Mineralogical Association of Canada Short Course Series, 23: 367-400.
  • 54. Riou, R., 1979. Petrography and Geochemistry of the Volcanic and Plutonic Rocks of the Ahar Quadrangle (Eastern Azarbaijan Iran). University of Saarland.
  • 55. Roedder, E., 1984. Fluid inclusions. Mineralogical Society of America. Reviews in Mineralogy, 12.
  • 56. Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Journal of Science and Technology: 306-308.
  • 57. Rusk, B.G., Reed, M.H., 2002. Scanning electron microscope-cathodoluminescence of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology, 30: 727-730.
  • 58. Saunders, J.A., 1994. Silica and gold textures in bonanza ore of the Sleeper deposit, Humboldt County, Nevada: evidence for colloids and implications for epithermal ore-forming processes, Economic Geology, 89: 628-638.
  • 59. Shimizu, T., 2014. Reinterpretation of quartz textures in terms of hydrothermal fluid evolution at the Koryu Au-Ag deposit, Japan. Economic Geology, 109: 2051-2065.
  • 60. Shimizu, T., Matsueda, H., Ishiyama, D., Matsubaya, O., 1998. Genesis of epithermal Au-Ag mineralization of the Koryu mine, Hokkaido, Japan. Economic Geology, 93: 303-325.
  • 61. Sillitoe, R.H., Hedenquist, J.W., 2003. Linkage between volcano-tectonic settings, ore-fluid compositions, and epithermal precious-metal deposits. Society of Economic Geologist, Special Publication, 10: 315-343.
  • 62. Simmons, S.F., Browne, P.R.L., 2000. Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: implications for understanding low-sulfidation epithermal environments. Economic Geology, 95: 971-999.
  • 63. Simmons, S.F., White, N.C., John, D.A., 2005. Geological characteristics of epithermal precious and base metal deposits. Economic Geology. 100th Anniversary: 485-522.
  • 64. Sisson, T.W., 1994. Hornblende-melt trace-element partitioning measured by ion microprobe. Chemical Geology, 117: 331-344.
  • 65. Wilkinson, J.J., 2001. Fluid inclusion in hydrothermal ore deposits. Lithos, 55: 229-272.
  • 66. Yang, Z.M., Hou, ZQ., Whit, NC., Chang, ZQ., Song, Li, YC., 2009. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geology Reviews, 36: 133-159.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05e0d9ef-7848-4052-9ca0-9ab65dc501a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.