PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

L-systems from 3D-imaging of Phenotypes of Arborized Structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biology is 3D. Therefore, it is important to be able to analyze phenomena in a spatio-temporal manner. Different fields in computational sciences are useful for analysis in biology; i.e. image analysis, pattern recognition and machine learning. To fit an empirical model to a higher abstraction, however, theoretical computer science methods are probed. We explore the construction of empirical 3D graphical models and develop abstractions from these models in L-systems. These systems are provided with a profound formalization in a grammar allowing generalization and exploration of mathematical structures in topologies. The connections between these computational approaches are illustrated by a case study of the development of the lactiferous duct in mice and the phenotypical effects from different environmental conditions we can observe on it. We have constructed a workflow to get 3D models from different experimental conditions and use these models to extract features. Our aim is to construct an abstraction of these 3D models to an L-system from features that we have measured. From our measurements we can make the productions for an L-system. In this manner we can formalize the arborization of the lactiferous duct under different environmental conditions and capture different observations. All considered, this paper illustrates the joint of empirical with theoretical computational sciences and the augmentation of the interpretation of the results. At the same time, it shows a method to analyze complex 3D topologies and produces archetypes for developmental configurations.
Wydawca
Rocznik
Strony
327--345
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Imaging and Bioinformatics group, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands
autor
  • Imaging and Bioinformatics group, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands
Bibliografia
  • [1] Cao L, Verbeek FJ. Nature Inspired Phenotype Analysis with 3D Model Representation Optimization. In: Abraham A, Krömer P, Snášel V (eds.), Innovations in Bio-inspired Computing and Applications. Springer International Publishing, Cham. 2014 pp. 165-174. ISBN:978-3-319-01781-5.
  • [2] Verbeek F, Boon P. High resolution 3D-reconstruction from serial sections - Microscope instrumentation, software design and its implementations. Proceedings of SPIE - Three Dimensional and Multi-Dimensional Microscopy. Image Acquisition and Processing IX., 2002. 4621:65-76. doi:10.1117/12.467833.
  • [3] Verbeek FJ, de Groot MM, Huijsmans DP, Lamers WH, Young IT. 3D base: A geometrical data base system for the analysis and visualisation of 3D-shapes obtained from parallel serial sections including three different geometrical representations. Computerized Medical Imaging and Graphics, 1993. 17(3):151-163. Confocal Microscopy.
  • [4] Borgefors G. Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 1986. 34(3):344-371. doi:https://doi.org/10.1016/S0734-189X(86)80047-0.
  • [5] Fritsch FN, Carlson RE. Monotone Piecewise Cubic Interpolation. SIAM Journal on Numerical Analysis, 1980. 17(2):238-246. URL http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SJNAAM000017000002000238000001&idtype=cvips&gifs=yes.
  • [6] Kazhdan M, Bolitho M, Hoppe H. Poisson surface reconstruction. In: Proceedings of the fourth Eurographics symposium on Geometry processing, SGP ’06. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland. ISBN:3-905673-36-3, 2006 pp. 61-70. URL http://portal.acm.org/citation.cfm?id=1281957.1281965.
  • [7] Akgül CB, Sankur B, Yemez Y, Schmitt F. 3D Model Retrieval Using Probability Density-Based Shape Descriptors. IEEE Trans. Pattern Anal. Mach. Intell., 2009. 31(6):1117-1133. doi:10.1109/TPAMI.2009.25.
  • [8] Dey TK, Sun J. Defining and Computing Curve-skeletons with Medial Geodesic Function. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP ’06. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland. ISBN:3-905673-36-3, 2006 pp. 143-152. URL http://dl.acm.org/citation.cfm?id=1281957.1281975.
  • [9] Piccinelli M, Veneziani A, Steinman DA, Remuzzi A, Antiga L. A Framework for Geometric Analysis of Vascular Structures: Application to Cerebral Aneurysms. IEEE Trans. Med. Imaging, 2009. 28(8):1141-1155. doi:http://dx.doi.org/10.1109/TMI.2009.2021652.
  • [10] Lee TC, Kashyap RL, Chu CN. Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms. CVGIP: Graphical Models and Image Processing, 1994. 56(6):462-478. doi:10.1006/cgip.1994.1042.
  • [11] Xie WJ, Thompson RP, Perucchio R. A topology-preserving parallel 3D thinning algorithm for extracting the curve skeleton. Pattern Recognition, 2003. 36(7):1529-1544. doi:10.1016/S0031-3203(02)00348-5.
  • [12] Nmeth G, Kardos P, Palgyi K. Topology Preserving 3D Thinning Algorithms Using Four and Eight Subfields. 2010. 6111:316-325. doi:10.1007/978-3-642-13772-3_32.
  • [13] Cardenes R, Bogunovic H, Frangi AF. Fast 3D centerline computation for tubular structures by front collapsing and fast marching. In: Proceedings of the International Conference on Image Processing, ICIP 2010, September 26-29, Hong Kong, China. IEEE. ISBN: 978-1-4244-7994-8, 2010 pp. 4109-4112. doi:http://dx.doi.org/10.1109/ICIP.2010.5651609.
  • [14] Van Uitert R, Bitter I. Subvoxel precise skeletons of volumetric data based on fast marching methods. Medical Physics, 2007. 34(2):627-638. doi:10.1118/1.2409238.
  • [15] Telea A, Vilanova A. A robust level-set algorithm for centerline extraction. In: Joint EUROGRAPHICS-IEEE TCVG Symposium on visualization. 2003.
  • [16] Verroust A, Lazarus F. Extracting skeletal curves from 3D scattered data. The Visual Computer, 2000. 16(1):15-25. doi:10.1007/pl00007210.
  • [17] Lindenmayer A. Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. Journal of Theoretical Biology, 1968. 18(3):280-299.
  • [18] Rozenberg G, Salomaa A. Mathematical Theory of L Systems. Academic Press, Inc., Orlando, FL, USA, 1980. ISBN:0125971400.
  • [19] Rozenberg G, Salomaa A (eds.). The book of L. Springer-Verlag New York, Inc., New York, NY, USA, 1986. ISBN:0-387-16022-1.
  • [20] Prusinkiewicz P, Lindenmayer A. The Algorithmic Beauty of Plants. Springer-Verlag New York, Inc., New York, NY, USA, 1990. ISBN:0-387-97297-8.
  • [21] Jelinek H, Karperien A, Cornforth D, Cesar Junior RM, G LJJ. MicroMod - an L-systems approach to neuron modelling. In: National University. 2002 pp. 156-163.
  • [22] Ascoli GA, Krichmar JL. L-neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 2000. 3233(0):1003-1011. doi:10.1016/S0925-2312(00)00272-1.
  • [23] Ascoli GA. Progress and perspectives in computational neuroanatomy. The Anatomical Record, 1999. 257(6):195-207. doi:10.1002/(SICI)1097-0185(19991215)257:6¡195::AID-AR5¿3.0.CO;2-H.
  • [24] Jelinek HF, Cesar RM, Leandro JJG, Spence I. Automated morphometric analysis of the cat retinal alpha/Y, beta/X and delta ganglion cells using wavelet statistical moment and clustering algorithms. J Integr Neurosci, 2004. 3(4):415-32. URL http://www.biomedsearch.com/nih/Automated-morphometric-analysis-cat-retinal/15657977.html.
  • [25] Cowin P, Wysolmerski J. Molecular mechanisms guiding embryonic mammary gland development. Cold Spring Harb Perspect Biol, 2010. 2(6):a003251. URL http://www.biomedsearch.com/nih/Molecular-Mechanisms-Guiding-Embryonic-Mammary/20484386.html.
  • [26] Lee PC, Chuang CC, Chiang AS, Ching YT. High-throughput Computer Method for 3D Neuronal Structure Reconstruction from the Image Stack of the Drosophila Brain and Its Applications. PLoS Computational Biology, 2012. 8(9). doi:10.1371/journal.pcbi.1002658.
  • [27] Zhao T, Xie J, Amat F, Clack N, Ahammad P, Peng HC, Long FH, Myers E. Automated Reconstruction of Neuronal Morphology Based on Local Geometrical and Global Structural Models. Neuroinformatics, 2011. 9(2-3):247-261. doi:10.1007/s12021-011-9120-3.
  • [28] Kalman P, Juerg T, Eric AH, Milan S. Quantitative analysis of pulmonary airway tree structures. Computers in Biology and Medicine, 2006. 36(9):974-996. doi:10.1016/j.compbiomed.2005.05.004.
  • [29] G KD, C SD, B RJ. Three-Dimensional Blood Vessel Quantification via Centerline Deformation. Medical Imaging, IEEE Transactions on, 2009. 28(3):405-414. doi:10.1109/TMI.2008.2004651.
  • [30] Henderson A. The {ParaView} Guide: A Parallel Visualization Application. Kitware, 2004. ISBN-10:1930934149, 13:978-1930934146.
  • [31] Pressley A. Elementary differential geometry. Springer, London; New York, 2010. ISBN:9781848828902184882890X.
  • [32] Boudon F, Pradal C, Cokelaer T, Prusinkiewicz P, Godin C. L-py: an L-system simulation framework for modeling plant architecture development based on a dynamic language. Front Plant Sci, 2012. 3:76. URL http://www.biomedsearch.com/nih/L-py-system-simulation-framework/22670147.html.
  • [33] Verbeek FJ, Huijsmans DP. A Graphical Database for 3D Reconstruction Supporting (4) Different Geometrical Representations. 1998. 465:117-144. doi:10.1007/978-1-4615-5553-7_5.
  • [34] Verbeek FJ, Huijsmans DP, Baeten RJAM, Schoutsen NJC, Lamers WH. Design and implementation of a database and program for 3D reconstruction from serial sections: A data-driven approach. Microscopy Research and Technique, 1995. 30(6):496-512. doi:10.1002/jemt.1070300607.
  • [35] Propper AY, Howard BA, Veltmaat JM. Prenatal morphogenesis of mammary glands in mouse and rabbit. J Mammary Gland Biol Neoplasia, 2013. 18(2):93-104. doi:10.1007/s10911-013-9298-0.
  • [36] Rappoport JZ, Simon SM. Endocytic trafficking of activated EGFR is AP-2 dependent and occurs through preformed clathrin spots. Journal of Cell Science, 2009. 122(9):1301-305.
  • [37] Cao L, Verbeek FJ. Analytical evaluation of algorithms for point cloud surface reconstruction using shape features. Journal of Electronic Imaging, 2013. 22(4):043008-043008. doi:10.1117/1.JEI.22.4.043008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05ded529-dcc9-4785-8f50-a7706a02adb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.