PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic and economic evaluation of a CO2 membrane separation unit integrated into a supercritical coal-fired heat and power plant

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of thermodynamic and economic analysis of a coal-fired combined heat and power plant (CHP) working at supercritical parameters, integrated with a carbon dioxide capture unit based on membrane technologies. Two membrane system configurations are described, compared and optimized. Both consist of a twostage membrane unit, but in the first variant (Case 1) no recirculation is performed while in the second one (Case 2), retentate from behind the second membrane is recirculated before the first membrane. The economic analysis includes a comparison of the systems with a unit working without CO2 capture (reference unit). The main thermodynamic (annual generation of the products, efficiencies) and economic (break-even price of electricity, break-even price of membranes) indices are presented in this paper. The results show that the profitability of the investment in CHP units integrated with CO2 capture is strongly dependent on the annual operation time and price of emission allowances. Better thermodynamic and economic characteristics are obtained for the system with retentate recirculation than for the system without recirculation.
Rocznik
Strony
201--210
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 41-106 Gliwice, Poland
autor
  • Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 41-106 Gliwice, Poland
autor
  • Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 41-106 Gliwice, Poland
Bibliografia
  • [1] M. Makiela, Energetyczna mapa drogowa eu 2050, GLOBEnergia: Odnawialne Źródła Energii 6.
  • [2] European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Roadmap for moving to a competitive low carbon economy in 2050, Brussels, COM(2011) 112 final (8 March 2011).
  • [3] J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D. Srivastava, Advances in CO 2 capture technology – the US Department of Energy’s Carbon Sequestration Program, International journal of greenhouse gas control 2 (1) (2008) 9–20.
  • [4] M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J.- M. Amann, C. Bouallou, Pre-combustion, post-combustion and oxy-combustion in thermal power plant for co 2 capture, Applied Thermal Engineering 30 (1) (2010) 53–62.
  • [5] C. Descamps, C. Bouallou, M. Kanniche, Efficiency of an integrated gasification combined cycle (igcc) power plant including co2 removal, Energy 33 (6) (2008) 874–881.
  • [6] M. Stec, A. Tatarczuk, L.Więcław-Solny, A. Krótki, M. Ściążko, S. Tokarski, Pilot plant results for advanced co2 capture process using amine scrubbing at the jaworzno ii power plant in poland, Fuel 151 (2015) 50–56.
  • [7] A. Skorek-Osikowska, J. Kotowicz, K. Janusz-Szymańska, Comparison of the energy intensity of the selected co2-capture methods applied in the ultra-supercritical coal power plants, Energy & Fuels 26 (11) (2012) 6509–6517.
  • [8] A. Skorek-Osikowska, Ł. Bartela, J. Kotowicz, Influence of the selected parameters on the effectiveness of IGCC system integrated with CCS installation, Chemical and Process Engineering 35 (2) (2014) 233-248.
  • [9] E. Favre, Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption?, Journal of Membrane Science 294 (1) (2007) 50–59.
  • [10] A. Brunetti, F. Scura, G. Barbieri, E. Drioli, Membrane technologies for co2 separation, Journal of Membrane Science 359 (1) (2010) 115–125.
  • [11] L. P. Remiorz, Detection of disturbance of the nitrogen and co2 mixture uniformity in an acoustic tube, Journal of Power Technologies 94 (3) (2014) 226–231.
  • [12] J. Kotowicz, . Bartela, A. Skorek-Osikowska, Analizy bloku kogeneracyjnego na parametry nadkrytyczne zintegrowanego z instalacją separacji CO2, Wydawnictwo Politechniki Śląskiej, Gliwice, 2014.
  • [13] J. Kotowicz, A. Skorek-Osikowska, . Bartela, A. Balicki, S. Michalski, Technologie oxy-spalania dla bloków węglowych zintegrowanych z wychwytem dwutlenku węgla, Wydawnictwo Politechniki Śląskiej, Gliwice, 2015.
  • [14] G. Wiciak, J. Kotowicz, Badania wpływu strumienia przepływu i ciśnienia na własności separacji CO2 membrany kapilarnej branżowe w Ochronie Środowiska Monografie Komitetu Inżynierii Środowiska PAN 96 (2012) 291–300.polimerowej - wybrane zagadnienia, Membrany i Procesy Membranowe w Ochronie Środowiska Monografie Komitetu Inżynierii Środowiska PAN 2012, vol. 96, 291-300. ISBN 83-89293-23-7.-
  • [15] J. Wijmans, R. Baker, The solution-diffusion model: a review, Journal of membrane science 107 (1) (1995) 1–21.
  • [16] D.-Y. Peng, D. B. Robinson, A new two-constant equation of state, Industrial & Engineering Chemistry Fundamentals 15 (1) (1976) 59–64.
  • [17] K. Janusz-Szymańska, J. Kotowicz, Konsekwencje termodynamiczne i ekonomiczne wprowadzenia do bloku energetycznego membranowej instalacji wychwytu gazu cieplarnianego (co2), Rynek Energii 112 (3) (2014) 76–81.
  • [18] A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, PEG modified poly (amide-b-ethylene oxide) membranes for CO2 separation, Journal of Membrane Science 307 (1) (2008) 88–95.
  • [19] Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz, Economic analysis of a supercritical coal-fired chp plant integrated with an absorption carbon capture installation, Energy 64 (2014) 513–523.
  • [20] Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz, Thermodynamic, ecological and economic aspects of the use of the gas turbine for heat supply to the stripping process in a supercritical chp plant integrated with a carbon capture installation, Energy Conversion and Management 85 (2014) 750–763.
  • [21] DOE/NETL. CO2 Capture Membrane Process for Power Plant Flue Gas. Final Technical Report DOE Cooperative Agreement No. DE-NT0005313 (2011). URL www.netl.doe.gov
  • [22] U.S. Department of Energy. Advanced carbon dioxide capture R&D program: technology update, Appendix b: carbon dioxide capture technology sheets - Post-Combustion Membranes (May 2013). URL www.netl.doe.gov
  • [23] R. Trotignon, In search of the carbon price. The European CO2 emission trading scheme: From ex-ante and ex-post analysis to the projection in 2020, Paris (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05da81d6-4ad1-47e0-827f-817aa73de81b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.