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INTRODUCTION

The fast progress of computer vision has 
gained a great impact on interdisciplinary fields, 
including sports research. Modern, sophisticated 
equipment enables researchers to obtain more and 
more accurate data and thus more precise analy-
sis. A high-level understanding of the information 
gathered in digital images, video or motion cap-
ture data allows athletes to maximize their perfor-
mance, verify their progress, but also to involve 
people in sports activities with the use of various 
applications [1]. Modern technologies, such as 
artificial intelligence, intelligent retrieval, the In-
ternet of Things, as well as machine learning have 

been widely applied to analyse the way athletes 
play, compete, and train.

Today technological development provides 
easier access to up-to-date tools, which make 
possible the measurement of the three-dimen-
sional movement of tennis players. Various types 
of motion capture systems allow researchers to 
perform studies in both: the laboratory settings 
as well as on the tennis court. Marker-based 
systems are accurate because retro-reflective or 
LED markers are attached to the proper parts 
of the body and indicate their precise positions. 
Obtained recordings usually need additional 
post-processing, which is long-lasting. Further, 
less accurate markerless equipment is more 
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accessible and therefore more often used in the 
analysis of tennis strokes. Due to the growing 
popularity of tennis, more and more scientific 
studies have been conducted. In 2021 almost 
87 million people played this sport around the 
world, which accounted for 1.17% of the world’s 
population [2]. This resulted in increasing scien-
tific works done in the area of plyer movement 
analysis. Many researchers use existing datas-
ets available online or create their own, for the 
purposes of conducted studies. Their importance 
for various sports disciplines has been appreci-
ated [3]. This kind of information is vital to com-
pare the athlete performance using previous and 
current data. Various types of data storage such 
as, numerical data, graphics, audio or video re-
cordings, can also be considered as multimedia 
repositories of sports information. Datasets are 
exceptionally valuable assets, especially if the 
information provides timely and efficient data 
that is adjusted to particular requirements. In ad-
dition, the stored data are verified by experts, so 
they are accurate, which affects the precision of 
further analysis and numerical experiments.

Based on a literature review, the authors ob-
served the need to collect a tennis stroke data that 
accurately reflect the movements while perform-
ing tennis strokes together with the trajectories 
and positions of the tennis racket. The following 
main aims have been defined:
1. Present a state-of-the-art tennis dataset, ti-

tled 3DTennisDS, containing the basic tennis 
moves captured by a Vicon system,

2. Compare the quality of human action recogni-
tion based three datasets that represent tennis 
moves differently: the well-known THETIS 
dataset based on a Kinect, the Tennis-Mocap 
dataset gathered bvh data and the 3DTennisDS 
containing c3d files,

3. Verify how the impact of input data fuzzifica-
tion influences on classification accuracy.

RELATED WORKS

Studies concerning tennis stroke recognition 
methods can be found in a number of publica-
tions. Analyses have been performed mainly us-
ing data obtained from various types of motion 
capture systems or videos. Usually, the authors 
use publicly available databases (e.g., THETIS, 
MADS, and MSR Action 3D) or their own, cre-
ated for the purposes of the conducted studies.

Action recognition based on motion capture 
datasets

The martial arts, dancing and sports (MADS) 
dataset containing both motion capture data and 
video data for various types of actions, such as 
arts and sports [4]. Also, tennis movements like 
serve, forehand and backhand were included. 
Data were gathered using a seven-camera motion 
capture system. Each participant had thirty-five 
markers attached to the body, nineteen of which 
indicated human body joints. The body shape and 
pose parameters were evaluated using a personal-
ized depth tracker. 

A well-known public THETIS dataset con-
taining tennis movements recorded by a Kinect 
was presented in [5]. Twelve tennis strokes were 
recorded: forehand flat, forehand open stands, 
forehand slice, forehand volley, service flat, back-
hand, backhand with two hands, backhand slice, 
backhand volley, service kick, service slice, and 
smash. Thirty-one amateurs and twenty-four ex-
perienced players took part in motion capture ses-
sions. Each stroke was performed several times, 
which resulted in obtaining 8734 videos in AVI 
format. The dataset is represented by data such as: 
depth, RGB, 2D and 3D skeleton, as well as sil-
houette. It contained skeleton joints as well. Addi-
tionally, based on the gathered data, classification 
of all captured tennis movements was performed. 

Many researchers use these twelve tennis 
moves from this dataset in their studies [6, 7, 8, 
9, 10, 11, 12]. One example is tennis movements 
recognition using the five-layer deep historical 
long short-term memory (LSTM) network [6]. For 
indicating the current move the previous frame 
representing tennis player position were also taken 
into consideration. The Inception V3 was applied 
for feature extraction for classification purposes. In 
[7] the authors created a model for distinguishing 
these twelve various tennis movements using In-
ceptionResNetV2 and ResNet152V2. For feature 
extraction based on RGB video frames the CNN-
LSTM network was used, while for spatial features 
from video extraction the Xception was applied. 

In [8, 9] all tennis moves from the THETIS 
dataset were classified using the 3-layered LSTM 
network. As in previous study, the Inception 
was used for feature extraction from RGB video 
frames. Recognition of six tennis strokes using 
the LSTM classifier was also presented in [10]. 
The study was performed also on RGB data. The 
end-to-end network with channel and attention 
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modules was applied for classification. The deter-
mining level of expertise of tennis players’ actions 
based on twelve tennis moves from the THETIS 
dataset was described in [12]. Both shape and 
motion were considered for k-NN classification 
with dynamic time warping (DTW) as a distance 
metric. The same tennis movements were also rec-
ognised utilizing linear-chain conditional random 
fields (CRF) and support vector machine (SVM) 
[11]. The actions were interpreted as words se-
quence with direction and speed in region of in-
terest (ROI). Tennis swing and tennis serve were 
recognized using a convolutional neural network 
(CNN) in [13]. The network was tested on the me-
dium-sized level MSR Action 3D database. From 
RGB images the 2D skeleton joints were extract-
ed. Despite the lack of orientation between human 
limbs, hight recognition accuracy was obtained 
for all tennis moves, up to 98.10%.

A new approach involving Hilbert embed-
ding-based framework (EHECCO) to extract the 
nonlinear dependencies for time series classifica-
tion was presented in [14]. Motion capture (Mo-
cap) data classification covering subject, style and 
action recognition were performed using three 
datasets: HDM05, CMU and Tennis-Mocap. Var-
ious types of methods were compared for tennis 
action recognition purposes. 

There are a great number of studies where 
the datasets were created for the purpose of the 
authors’ research. In [15] the dataset of tennis 
movements for five participants was created us-
ing Mocap system. The swinging motions of 
forehand and backhand strokes were analyzed 
based on hand positions using a hidden Markov 
model. The dataset of the forehand swing, slow 
and fast, performed by novice and intermediate 
tennis players was described in [16]. The data 
were captured using a nine-camera eMotion 
(BTS) SMART-e 900. The movements were per-
formed with a tennis racket without a ball with 
the frequency set to 50 Hz. Due to various ways 
of performing forehand strokes, the ROI included 
from 7 to 13 frames. The classification of basic 
tennis moves using Learning Vector Quantization 
was presented in [17]. The dataset of data gath-
ered from the PIQ Robot sports tracker, which 
used inertial sensor technologies, pressure sensor 
and a cutting edge microprocessor. The obtained 
results showed that basic moves, forehand, back-
hand, serve, and volley, were recognized with an 
accuracy up of to 90%. However, specific types, 

such as: flat, slices, and lifted did not achieve the 
same accuracy, due to the similarity of strokes. 

Tennis motion recognition taking into consid-
eration tennis racket orientation may be found in 
many studies. Tennis moves classification, with 
deep neural network, including serve, backhand 
and forehand, together with their various types 
(e.g. topspin or slice) was described in [18]. The 
data of 5682 labelled shots were recorded with 
the wearable SensorTile from 16 amateur players 
aged 13 to 70. Recognition of six tennis swinging 
moves using the same type of data utilizing de-
cision tree (DT), SVM, neural networks (NN) as 
well as k-NN networks was described in [19]. In 
[20], tennis serves, forehand and backhand were 
recognised using two classifiers: SVM with the ra-
dial basis function kernel and k-NN classifiers. A 
wireless inertial measurement unit sensor together 
with an eight-video camera system was used for 
capturing the data. Another study of forehand, 
backhand and non-hit classification using the spa-
tial-temporal graph convolutional neural networks 
(ST-GCN) may be found in [21]. The data were 
collected using the Vicon Mocap system.

Action recognition based on datasets 
containing video

Due to the huge amount and general avail-
ability of video and streaming data, action recog-
nition is often analyzed in many scientific papers.

Based on video clips from YouTube, a dataset 
of mimed human actions was created [22]. The 
Mimetics Dataset gathered 50 human activities. 
Totally 713 video data were stored. Tennis vid-
eos are not divided into separate types of strokes. 
Action recognition of all human actions was per-
formed using the 3D CNN network as well as dif-
ferent variations of ST-GCN classifiers for 2D and 
3D poses. Another commonly used dataset named 
UTF-101 was applied in [23, 24]. Therein the ten-
nis swing was recognized among other sport ac-
tivities. This dataset consists of 101 action classes 
from YouTube. The stored movements were di-
vided into continuous activities and short actions. 
To the latter tennis swing was assigned. In [25] 
a markerless motion capture framework for pose 
estimating was presented. It defined regions of 
relevant data that were represented as body parts. 
Two datasets containing tennis games (Tennis-
Sense and HumanEva) in the form of videos were 
used for this purpose. Tennis movements were 
not divided into specified strokes.
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Action detection, utilizing unsupervised 
learning of semantic events, of tennis movements 
such as: forehand, backhand, serve, running, ob-
tained from tennis match videos was presented in 
[26]. For the studies two video sequences of tennis 
matches were used. The automated detection of 
winning shots in tennis matches from broadcasted 
videos was presented in [27]. A new dataset was 
created containing short duration video sequences 
of winning and non-winning shots gathered from 
the final of the 2017 Wimbledon Grand Slam 
tournament between Roger Federer and Marin 
Cilic. The detection was performed from a cam-
era mounted behind the opponents. The dataset 
consisted of 100 examples of sequence divided 
into two classes “winners” and “no-winners”. 3D 
Convolutional Neural Networks were applied for 
the detection purposes.

In [28] an estimation of the tennis players’ 
results (score and failure) gained in a game was 
presented. The dataset consisted of 262 singles’ 
videos. Tennis pose estimation and ball position 
were taken into consideration for feature detec-
tion. The two-class classification by bidirectional 
LSTM with attention mechanism was applied. An 
unsupervised procedure, with frame level annota-
tion, to recognize action phases in tennis videos 
was described in [29]. For the studies 314 tennis-
points videos obtained from video-commentary 
dataset of London Olympics 2012 were used [30]. 
The analysis began from the serve and ended with 
winning a point. 

The way of tennis stroke prediction during 
matches utilizing player’s pose as well as position 
was presented in [31]. The study involved auto-
matically labelling. The dataset containing videos 
of professional tennis matches was used. LSTM 
was used for extracting features (player’s posi-
tion and court’s lines), while recurrent neural net-
work (RNN) was applied for prediction of stroke 
directions. Recognition and classification using 
Mahalanobis distance of forehand, backhand and 
serve were presented in [32]. The data were gath-
ered from three professional right-handed ten-
nis players by a single AXIS 215 PTZ camera. 
Sixty serves, sixty forehands and forty backhands 
were recorded. The pose estimation using Convo-
lutional Neural Network for three tennis move-
ments was presented in [33]. For the purpose of 
this study a new dataset of 310 images represent-
ing tennis athletes together with body parts an-
notations was created. The TenniSet created from 
five matches at the 2012 London Olympics, was 

obtained from YouTube was presented in [34]. A 
sequence of events corresponding to the match in 
a way of attributes were added to the dataset. For 
the frame classification the VGG16 network was 
used, while for the purpose of events and actions 
recognition both a bidirectional and a forward 
direction RNNs were applied. A dataset created 
from the broadcast tennis video at the 2017 Sum-
mer Universiade was presented in [35]. Totally, 
81 game-related clips were gathered. Each clip 
started with serve and finished with gaining a 
point. The tennis ball was detected and its move 
was tracked. Three trajectory patterns were de-
fined: flying, hit, and bouncing. The 13 layers 
of VGG-16 were applied for ball trajectory pat-
tern classification, while the 14–24 layers of 
DeconvNet were used for ball trajectory predic-
tion. The dataset was created from TV broadcasts 
for five sports disciplines. Volleyball, basketball, 
tennis, cricket and football were used for classi-
fication sport disciplines using SVM [36]. From 
the video the features were extracted in the way 
of edge information from sub-bands.

The performing tennis serves was considered 
in [37]. It was said that players eagerly took risks 
while performing their first serve. The results 
showed that for this type of tennis move per-
formed by tennis pro there is a strategy how to 
do first or second serve minimizing the risk. The 
study was performed on the dataset containing the 
international skilful tennis games from 2005 to 
2009, gathered from the Grand Slam and Associa-
tion of Tennis Players tournaments, or lower-lev-
el International Tennis Federation tournaments. 
In total, 3188 games corresponding to 69.1360 
serves were taken into consideration. The tool for 
planning matches against an opponent was pre-
sented in [38]. Each ball trajectory, gathered from 
Hawk-Eye system, of various types of serves was 
represented as two sub-trajectories, from which 
the features were extracted such as: angle, loca-
tion and impact speed. Tracking a tennis ball dur-
ing the match using a machine learning approach 
was presented in [39]. This method utilized ran-
dom forest segmentation for identifying the ball. 
The algorithm was verified on a dataset created 
from Roger Federer play from Youtube.

The identification of racket sport (including ten-
nis and badminton) tactics, its analysis, as well as 
the player’s progression was presented in [40]. The 
described algorithm for multidimensional patterns 
was performed on badminton and tennis datasets.
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The Kernelised Linear Discriminant Analy-
sis with annotation transfer learning was applied 
for hit, serve and non-hit identifications [41]. The 
basic tennis groundstrokes classification utilizing 
SVM from a video may be found in many studies 
[42, 43, 44].

MOTION CAPTURE DATASETS

For human action recognition focused on 
tennis movements the following motion capture 
datasets were taken into consideration: THETIS, 
Tennis-Mocap and final, 3DTennisDS, created 
for the purpose of this experiments. All of the 
above-mentioned datasets are publicly available. 
They contain tennis stroke motion capture trajec-
tories, recorded in different ways, and saved in 
various data formats. The THETIS is one of the 
best-known datasets captured using markerless 
system, while the Tennis-Mocap was chosen as 
an example of marker-based one.

THETIS

The THETIS dataset was presented in 2013 
[5]. Twelve various tennis movements were re-
corded using Microsoft’s Kinect. Tennis strokes 
were carried out by thirty-one amateurs and twen-
ty-four professional athletes. The dataset includes: 
backhand (one-handed, two-handed, slice), vol-
ley (backhand and forehand), forehand (flat, open 

stands, slice), service (flat, kick, slice) and smash. 
The following data formats are available: ONI files, 
depth and RGB videos, silhouette, skeleton 2D and 
3D videos, and skeleton joints. It is one of the most 
cited datasets and constitutes the background for 
many studies. The ONI files present the model of 
the tennis player consisting of 15 points (Figure 1).

Tennis-Mocap

For the purpose of action classification and 
movement analysis the Tennis-Mocap dataset was 
created in 2020 [14]. 17 athletes of the Caldas-Co-
lombia tennis league were the participants included 
in the research. Optitrack Flex V100 including six 
cameras with the frequency set to 100 Hz was used 
for tennis movement capturing. Thirty-four mark-
ers were attached for collecting information about 
body joints. All participants were asked to hit the 
ball with constant velocity. Their movements were 
supposed to be as much similar during the match as 
it was possible. They performed series of the fol-
lowing strokes: groundstrokes (forehand and back-
hand), serve, volleys and smash.

3DTennisDS

In this part, we present the process of creat-
ing a unique 3DTennisDS dataset containing re-
cordings of basic tennis strokes acquired by Vi-
con, an optical motion capture system. The whole 
methodology (see Figure 2) consists of capturing 

Figure 1. THETIS subject model
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tennis moves, data post-processing and data prep-
aration for public availability.

Capturing tennis movements

The acquisition of the basic tennis strokes 
was carried out in the motion capture laboratory 
at the Lublin University of Technology. The basic 
tennis movements, forehand, backhand and vol-
ley, were registered utilizing the optical 8 – cam-
era Vicon Mocap system with the frequency set 
to 100 Hz. Both the tennis player and the tennis 
racket were captured. 

Ten tennis professionals were the participants 
in this study. In total, 39 retroreflective markers 
were attached to their bodies using hypoaller-
genic double-sided tape, according to the Plug-in 
Gait Model (PiG) [45]. Then, they were measured 
for the purpose of creating and scaling new sub-
jects in the Vicon Nexus software. The parame-
ters were collected for left and right parts of body. 
Additionally, seven retroreflective markers were 

also fixed to the tennis racket (Figure 3). That 
resulted in reconstructing the shape of the racket 
and obtaining the racket’s trajectory.

Participants carried out four tennis move-
ments: backhand, forehand, volley (forehand and 
backhand). Forehand and backhand were per-
formed while the tennis player was moving. The 
participant tried to avoid a small bollard placed 
on the floor. This resulted in obtaining more natu-
ral moves, similar to those performed directly on 
the court. At first, ten forehand strokes without a 
ball were carried out, followed by ten backhand 
strokes without a ball. Secondly, these activities 
were done with a ball. Volleys were performed in 
front of a tennis net. The participant was asked to 
perform these types of moves alternately.

Data post-processing

Each recording was reviewed and all irregu-
larities were corrected using the Vicon Nexus 
software. The post-processing consisted of four 

Figure 2. Schema for creating 3DTennisDS
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steps (Figure 2): marker labeling, gap filling using 
interpolation methods, data cleaning (e.g., deleting 
all unlabeled markers), and applying the PiG mod-
el (only for the participant subject). A new sub-
ject was developed for the racket. The corrected 
recordings have been exported as c3d files. First, 
all markers in whole frames were labeled by PiG 
model and the model of the tennis racket. Second, 
missing markers were interpolated based on the 
marker’s positions from previous and following 
frames. Third, all unlabeled markers were deleted 
- all additional markers that appeared as results 
of reflections or other anomalies were removed. 
Fourth, the PiG model outputs were obtained. The 
final c3d file consisted of the 3D marker’s posi-
tions as well as joints, angles and moments.

Data preparation

The post-processed c3d files contained sev-
eral tennis strokes. A tennis expert separated con-
secutive tennis moves. The start and end frames 
of each move were determined based on both the 
player’s body and the tennis racket positions. As 
a result, the whole recording was divided into 
smaller ones, dedicated to one specific tennis 
move. Before making the data public, it was still 
necessary to make it anonymous. By removing 
sensitive data.

3DTennisDS access

The 3DTennisDS dataset is available for pub-
lic use at https://tennisdb.cs.pollub.pl/. A brief de-
scription of the dataset and its terms of use have 
been prepared. The whole dataset was published 

in the form of a table (see Figure 2) divided by 
the tennis participants and the type of moves. For 
each player the number of strokes is specified. 
Additionally, the link to the Plug-in Gait model 
was made available. The users may also down-
load the racket’s model.

GRAPH CONVOLUTIONAL NETWORKS

In this study, the tennis strokes recognition 
was performed with the ST-GCN, which architec-
ture is depicted in Figure 4.

Spatial temporal graph

Three-dimensional coordinates for the select-
ed parts of the player’s body for the successive 
frames were generated from the c3d tennis strokes 
files. In order to compare three-dimensional data 
from three various databases, a very important 
task was to ensure their consistency. To obtain 
corresponding markers, new positions from the 
3DTennisDS database were computed using in-
terpolation. For example, from four markers at-
tached to the head, one point was calculated. A 
similar situation took place for the determination 
of the hip positions on the basis of two markers 
from this model. The interpolation process was 
also applied for the Tennis-Mocap dataset. Based 
on the right and left collars a new point was in-
dicated. The obtained points were used to build 
the graph containing nodes and the connections 
among them as joints. Considering the sequence 
of these positions changing in time, a spatial time 

Figure 3. Placement of markers on a tennis racket
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graph corresponding to the time representation 
was built. Thus, the structure of the input data is 
expressed in the form of a graph G = (V, E) and 
consists of N nodes corresponding to N joints and 
changes in their position in time. The node set de-
scribes joints in a skeleton (Equation 1).

 𝑉𝑉 = 𝑣𝑣𝑡𝑡𝑡𝑡| 𝑡𝑡 = 1,⋯ , 𝑇𝑇, 𝑖𝑖 = 1, ,⋯ ,𝑁𝑁    (1) 
 
𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡 = ∑ ∑ 𝑓𝑓𝑡𝑡𝑖𝑖𝑝𝑝(𝑥𝑥) ∗ 𝜔𝜔𝐾𝐾𝐾𝐾     (2) 
 
𝑝𝑝 ∶ 𝐺𝐺(𝑣𝑣𝑡𝑡𝑡𝑡) ⟶ 𝑉𝑉     (3) 
 
𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡 = ∑ 𝑓𝑓𝑡𝑡𝑖𝑖(𝑣𝑣𝑡𝑡𝑡𝑡) ∗ 𝜛𝜛(𝑣𝑣𝑡𝑡𝑡𝑡)𝑣𝑣𝑡𝑡𝑡𝑡∈𝐺𝐺(𝑣𝑣𝑡𝑡𝑡𝑡)     (4) 
 
𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡 =  Λ−

1
2(𝐴𝐴 + 𝐼𝐼)Λ−

1
2𝑓𝑓𝑡𝑡𝑖𝑖𝑊𝑊    (5) 

 
where: Λ𝑡𝑡𝑡𝑡 =  ∑ (𝐴𝐴𝑡𝑡𝑡𝑡 + 𝐼𝐼𝑡𝑡𝑡𝑡)𝑡𝑡   
 

𝜂𝜂𝑅𝑅𝑅𝑅𝑠𝑠(𝑥𝑥) =  {
0, (𝑥𝑥 > 𝑑𝑑)

𝑑𝑑−𝑥𝑥
𝑑𝑑−𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑

1, 𝑥𝑥 <  𝑐𝑐
      (6) 

 
 

𝜂𝜂𝑅𝑅𝑠𝑠(𝑥𝑥) =  

{
  
  
0, (𝑥𝑥 < 𝑎𝑎)|| (𝑥𝑥 > 𝑑𝑑)
𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
1, 𝑏𝑏 < 𝑥𝑥 <  𝑐𝑐

𝑑𝑑−𝑥𝑥
𝑑𝑑−𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑

      (7) 

 
 

𝜂𝜂𝐿𝐿𝑅𝑅𝑠𝑠(𝑥𝑥) =  {
0, (𝑥𝑥 < 𝑎𝑎)

𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1, 𝑥𝑥 > 𝑏𝑏
      (8) 

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1𝑖𝑖∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦�̂�𝑖)2𝑖𝑖
𝑡𝑡=1     (9) 

1.  

 (1)

Tennis strokes recognition

The vector consisted of graph nodes is given 
as the input to the neural network. Base on it the 
operation of layer multiplication of the proposed 
spatial and temporal graph is performed. As a 
result, the features are extracted and a fixed-size 
vector is obtained. The Softmax classifier is uti-
lized in the final stage of the tennis movement 
classification. The stochastic gradient descent 
method was applied for network learning. 

The ST-GCN solution is constructed utilizing 
convolutional neural networks. Due to the basic 
convolutional operation a set of three-dimension-
al features is obtained from the network input. By 
specifying proper data padding the input as well 
as output data are the same size. That is why the 
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where: p – the sampling function and ω – the 
weights function. 

It should be stated that the weight function is 
irrelevant to the location of the x point. A stan-
dard convolution is therefore achieved by encod-
ing the rectangular grid in p(x). Detailed explana-
tions can be found in [47]. The sampling function 
can be defined on the neighbour set G(vti) = {vtj | 
d(vtj,vti) ≤ D} of node vti, where d(vtj,vti) indicates 
the minimum length of any path from vtj to vti. In 
this research D equals 1. Considering the above it 
can be written that [46]:
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That is why, for graphs, dependence Equation 
2 can be described as follows [46]:
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In this study, the ST-GCN method, presented 
by [48], was applied for tennis movements recogni-
tion. In each frame of Mocap data, the connections 
between joints (presented as matrix I) were defined 
utilizing Adjacency matrix (A). This relation, for a 
single frame, can be defined as Equation 5 [46]:

Figure 4. Scheme of applied ST-GCN classifier



167

Advances in Science and Technology Research Journal 2024, 18(6), 159–176

 

𝑉𝑉 = 𝑣𝑣𝑡𝑡𝑡𝑡| 𝑡𝑡 = 1,⋯ , 𝑇𝑇, 𝑖𝑖 = 1, ,⋯ ,𝑁𝑁    (1) 
 
𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡 = ∑ ∑ 𝑓𝑓𝑡𝑡𝑖𝑖𝑝𝑝(𝑥𝑥) ∗ 𝜔𝜔𝐾𝐾𝐾𝐾     (2) 
 
𝑝𝑝 ∶ 𝐺𝐺(𝑣𝑣𝑡𝑡𝑡𝑡) ⟶ 𝑉𝑉     (3) 
 
𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡 = ∑ 𝑓𝑓𝑡𝑡𝑖𝑖(𝑣𝑣𝑡𝑡𝑡𝑡) ∗ 𝜛𝜛(𝑣𝑣𝑡𝑡𝑡𝑡)𝑣𝑣𝑡𝑡𝑡𝑡∈𝐺𝐺(𝑣𝑣𝑡𝑡𝑡𝑡)     (4) 
 
𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡 =  Λ−

1
2(𝐴𝐴 + 𝐼𝐼)Λ−

1
2𝑓𝑓𝑡𝑡𝑖𝑖𝑊𝑊    (5) 

 
where: Λ𝑡𝑡𝑡𝑡 =  ∑ (𝐴𝐴𝑡𝑡𝑡𝑡 + 𝐼𝐼𝑡𝑡𝑡𝑡)𝑡𝑡   
 

𝜂𝜂𝑅𝑅𝑅𝑅𝑠𝑠(𝑥𝑥) =  {
0, (𝑥𝑥 > 𝑑𝑑)

𝑑𝑑−𝑥𝑥
𝑑𝑑−𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑

1, 𝑥𝑥 <  𝑐𝑐
      (6) 

 
 

𝜂𝜂𝑅𝑅𝑠𝑠(𝑥𝑥) =  

{
  
  
0, (𝑥𝑥 < 𝑎𝑎)|| (𝑥𝑥 > 𝑑𝑑)
𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
1, 𝑏𝑏 < 𝑥𝑥 <  𝑐𝑐

𝑑𝑑−𝑥𝑥
𝑑𝑑−𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑

      (7) 

 
 

𝜂𝜂𝐿𝐿𝑅𝑅𝑠𝑠(𝑥𝑥) =  {
0, (𝑥𝑥 < 𝑎𝑎)

𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1, 𝑥𝑥 > 𝑏𝑏
      (8) 

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1𝑖𝑖∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦�̂�𝑖)2𝑖𝑖
𝑡𝑡=1     (9) 

1.  

 (5)

where: 

𝑉𝑉 = 𝑣𝑣𝑡𝑡𝑡𝑡| 𝑡𝑡 = 1,⋯ , 𝑇𝑇, 𝑖𝑖 = 1, ,⋯ ,𝑁𝑁    (1) 
 
𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡 = ∑ ∑ 𝑓𝑓𝑡𝑡𝑖𝑖𝑝𝑝(𝑥𝑥) ∗ 𝜔𝜔𝐾𝐾𝐾𝐾     (2) 
 
𝑝𝑝 ∶ 𝐺𝐺(𝑣𝑣𝑡𝑡𝑡𝑡) ⟶ 𝑉𝑉     (3) 
 
𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡 = ∑ 𝑓𝑓𝑡𝑡𝑖𝑖(𝑣𝑣𝑡𝑡𝑡𝑡) ∗ 𝜛𝜛(𝑣𝑣𝑡𝑡𝑡𝑡)𝑣𝑣𝑡𝑡𝑡𝑡∈𝐺𝐺(𝑣𝑣𝑡𝑡𝑡𝑡)     (4) 
 
𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡 =  Λ−

1
2(𝐴𝐴 + 𝐼𝐼)Λ−

1
2𝑓𝑓𝑡𝑡𝑖𝑖𝑊𝑊    (5) 

 
where: Λ𝑡𝑡𝑡𝑡 =  ∑ (𝐴𝐴𝑡𝑡𝑡𝑡 + 𝐼𝐼𝑡𝑡𝑡𝑡)𝑡𝑡   
 

𝜂𝜂𝑅𝑅𝑅𝑅𝑠𝑠(𝑥𝑥) =  {
0, (𝑥𝑥 > 𝑑𝑑)

𝑑𝑑−𝑥𝑥
𝑑𝑑−𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑

1, 𝑥𝑥 <  𝑐𝑐
      (6) 

 
 

𝜂𝜂𝑅𝑅𝑠𝑠(𝑥𝑥) =  

{
  
  
0, (𝑥𝑥 < 𝑎𝑎)|| (𝑥𝑥 > 𝑑𝑑)
𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
1, 𝑏𝑏 < 𝑥𝑥 <  𝑐𝑐

𝑑𝑑−𝑥𝑥
𝑑𝑑−𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑

      (7) 

 
 

𝜂𝜂𝐿𝐿𝑅𝑅𝑠𝑠(𝑥𝑥) =  {
0, (𝑥𝑥 < 𝑎𝑎)

𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1, 𝑥𝑥 > 𝑏𝑏
      (8) 

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1𝑖𝑖∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦�̂�𝑖)2𝑖𝑖
𝑡𝑡=1     (9) 

1.  

 and W is the weight 
vector. 

In this study, the input feature map is regard-
ed as a tensor of (C,V,T) dimensions. The graph 
convolution is performed as a two-dimensional 
convolution matrix, multiples with normalized, 
two-dimensional adjacency matrix.

The classifier proposed for tennis movement 
recognition is created with the following layers: 
a three-layer ST-GCN (consisting of 32, 64 and 
64 kernels, respectively), pooling, convolutional 
layer (Figure 4). After the third layer, the average 
pooled data of joints and temporal directions are 
forwarded to a 1 × 1 convolutional layer. The fi-
nal is the four-dimensional layer, followed by the 
Softmax function, corresponds to the four recog-
nized tennis movements. 

Fuzzy approach

Due to the lack of sharp boundaries between 
strokes, it was decided to fuzzify the input.

Definition 1. A non-empty fuzzy set fs can be 
understood as an ordered pair (fs, ηfs) where nfs is 
a membership function nfs : fs → [0, 1], which al-
lows to perform the fuzzyfication operation. ηfs 
assigns to each element x in fs a degree of mem-
bership, 0 ≤ σ ≤ 1 [49].

Definition 2. A fuzzy relation on fs is a fuzzy 
subset of fs x fs. A fuzzy relation ηfs on fs is a fuzzy 
relation on the fuzzy subset σ, if ηfs(x, y) ≤ σ(x) ˄ 
σ(y) for all x, y from fs and ˄ stands for minimum. 
A fuzzy relation ηfs on fs is said to be symmetric if 
ηfs(x, y) = ηfs(y, x) for all x, y ∈ fs [49].

Definition 3. A fuzzy graph is a pair G: (σ, ηfs) 
where σ  is a fuzzy subset of fs, ηfs is a symmetric 
fuzzy relation on σ [49].

Definition 4. (σ’, η’fs) is a fuzzy subgraph of: 
(σ, ηfs) if σ’ ⊆ σ and η’fs [49]. 

Tennis movements may be recognized with 
“uncertain” phenomena [50]. Adding fuzzifica-
tion process to graph neural networks may be 
taken as a pattern how people perceive these 
moves. This process blurs the sharp boundar-
ies between the investigated sets. Applying both 
fuzzy rules and the reverse operation allows one 
to change one state to another. The fuzzification 
of the input data was performed utilizing the 
membership functions: 
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where: a, b, c, d denote trapezoidal function pa-
rameters and a<b<c< d. In the case of 
Equation 6 a=b=–∞

 
and in Equation 8 

c=d=∞.

EXPERIMENTS AND RESULTS

Used measures

In this section, the potential of the created 
3DTennisDS dataset was verified by applying 
the ST-GCN classifier. The three-dimensional 
coordinates of the markers attached to the mod-
els of a tennis player and a tennis racket were 
taken from the c3d files. The described dataset 
was compared with the well-known THETIS 
dataset and the Tennis-Mocap in order to verify 
how various types of data acquisition affect the 
accuracy of the human action recognition. In 
this study all ONI files from THETIS, all bvh 
files from Tennis-Mocap, as well as all c3d data 
from 3DTennisDS consisting forehand, back-
hand, volleys (forehand and backhand) were 
involved in the study. Moreover, the impact of 
fuzzification input data for both datasets was 
examined. The experiment consisted of the fol-
lowing steps: 1) Define the classes for four types 
of tennis movements. 2) Adapt Mocap data to a 
uniform model allowing comparison of available 
databases (consonant with the defined classes). 
3) Divide dataset to three subsets: training, test-
ing and validation in 60%, 20%, 20% propor-
tion, respectively. 4) For applying fuzzification, 
the input data were prepared using trapezoidal 
functions. 5) The 3DTennisDS dataset was pub-
lished at https://tennisdb.cs.pollub.pl/. 6) Net-
work learning. 7) The network was tested over 
twenty trials. 8) A confusion matrix was created 
and were computed [50].
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Evaluation of the tennis dataset

The experiments described in this study 
concerned tennis movement recognition using 
three various datasets containing tennis motion 
strokes. Four main tennis moves were taken into 
consideration. The first dataset, the THETIS, 
gathered movements captured using a Microsoft 
Kinect, using markerless method. The other two 
sets contained data recorded with the marker-
based method at the same frequency, which was 
set to 100 Hz. However, they differed in marker 
placement model as well as their representa-
tions. The second datatset, the Tennis-Mocap, 
stored data in the form of bvh file. Due to the 
growing demand for databases containing accu-
rate data, the authors had developed a new set of 
tennis strokes, the 3DTennisDS, registered with 
the Vicon motion capture system using 39 mark-
ers attached according to the PiG model. The 
data were stored as.c3d files in the third dataset. 
Since each of the datasets contained data repre-
sented in the form of various number of points 
(markers), they were adapted to the THETIS da-
taset to obtain fair comparison. From each file 
the three-dimensional coordinates of the corre-
sponding markers were taken. In the Tennis-Mo-
cap dataset left and right collar were interpolat-
ed into one point. In the 3DTennisDS LPSI and 
LASI markers, as well as RPSI and RASI were 
interpolated into left and right hips, respectively. 
Four markers placed on the head were also in-
terpolated into one. Additionally, from c3d data 
only corresponding markers’ coefficients to the 
THETIS model were taken into consideration. 
Additionally, in this study the tennis racket, con-
sisting of seven markers, was included.

In the study the authors investigated how the 
input data fuzzification affects the quality of ten-
nis moves classification. In Table 1 the obtained 
accuracy of the tennis moves from three datasets 
is presented. The tennis stroke recognition for the 

dataset created using the Vicon Mocap system has 
reached a higher average accuracy than the da-
taset defined using the Microsoft Kinect and the 
Optitrack Flex systems. The obtained maximum 
and minimum accuracy values also favor of the 
3DTennisDS dataset. 

It should be stated that data from marker-
based systems allow for higher accuracy than in 
the case of a markerless system. The obtained ac-
curacy for the 3DTennisDS is higher than for the 
THETIS dataset (7.45% for non-fuzzy input and 
7.20% for fuzzy input, respectively). In case of 
the Tennis-Mocap dataset the achieved accuracy 
is also higher for the 3DTennisDS (4.59% for 
non-fuzzy input and 5.93% for fuzzy input, re-
spectively). The accuracy results obtained on two 
datasets (THETIS and Tennis-Mocap) are com-
parable. They small difference speaks in favor of 
the Tennis-Mocap dataset (2.86% for non-fuzzy 
input and 1.27% for fuzzy input, respectively). 
The values of the standard deviation for three da-
tasets means lower variability of the distribution, 
and also that the obtained results do not differ sig-
nificantly from each other. 

Analyzing the results obtained in Table 2 for 
individual tennis strokes, it should be noted that 
the highest accuracy was obtained for the newly 
created 3DTennisDS for all tennis moves. Higher 
values were obtained for fuzzy data. This is due 
to no distinct boundaries between strokes (e.g., 
forehand and volley forehand). These strokes 
were classified with higher accuracy. It should be 
noted that for all analyzed datasets, all strokes 
were classified at a similar level within the par-
ticular dataset. In Table 3 the precision for all 
analyzed tennis strokes is gathered. This param-
eter stands for the ratio of correctly classified el-
ements (TP) to all elements marked by the used 
classifier as (TP + FP). The mean precision is 
higher for all strokes after applying fuzzification 
to the input for all datasets. A better precision 
was achieved for the 3DTennisDS dataset in all 

Table 1. Obtained accuracy results
Dataset Type of input Mean Max Min ±SD

THETIS
Non-Fuzzy 74.40% 80.00% 69.00% 3.18%

Fuzzy 80.40% 84.00% 77.00% 2.18%

3DTennisDS
Non-Fuzzy 81.85% 85.00% 77.00% 2.59%

Fuzzy 87.60% 92.00% 82.00% 3.07%

Tennis-Mocap
Non-Fuzzy 77.26% 81.90% 73.00% 3.06%

Fuzzy 81.67% 84.60% 79.10% 2.78%
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Table 2. Obtained accuracy results for individual strokes
Dataset Type of input Stroke Mean Max Min ±SD

THETIS

Non-fuzzy

Forehand 73.21% 80.00% 68.39% 3.26%

Backhand 73.47% 79.37% 68.02% 3.49%

Volley forehand 75.47% 79.85% 70.14% 3.51%

Volley backhand 74.08% 80.00% 68.46% 3.57%

Fuzzy

Forehand 80.68% 84.28% 76.52% 2.83%

Backhand 80.81% 84.76% 76.52% 2.83%

Volley forehand 80.10% 83.49% 76.66% 2.07%

Volley backhand 81.43% 84.38% 76.45% 2.23%

3DTennisDS

Non-fuzzy

Forehand 80.91% 85.93% 76.43% 2.78%

Backhand 80.39% 85.81% 77.05% 3.20%

Volley forehand 81.58% 85.94% 76.44% 2.93%

Volley backhand 81.09% 85.22% 76.17% 2.98%

Fuzzy

Forehand 87.07% 91.93% 81.31% 3.16%

Backhand 87.78% 92.04% 82.04% 3.13%

Volley forehand 87.97% 92.48% 82.22% 3.04%

Volley backhand 85.42% 92.33% 81.33% 3.05%

Tennis-Mocap

Non-fuzzy

Forehand 76.98% 85.50% 73.05% 2.47%

Backhand 77.10% 81.61% 73.23% 3.01%

Volley forehand 78.13% 81.98% 73.30% 3.10%

Volley backhand 77.79% 81.55% 73.11% 2.47%

Fuzzy

Forehand 84.62% 91.93% 79.14% 2.92%

Backhand 82.47% 84.84% 79.15% 3.93%

Volley forehand 81.20% 84.30% 79.25% 3.34%

Volley backhand 82.25% 84.82% 79.54% 3.52%

cases than for the THETIS and the Tennis-Mocap 
ones. In Table 4 the recall stands for the ratio of 
correctly recognized elements from class (TN) 
to all elements from that class. All tennis strokes 
gained better mean recall for 3DTennisDS da-
taset both for fuzzy and non-fuzzy input except 
non-fuzzy backhand in Tennis-Mocap dataset. In 
Table 5 the F1 score, a harmonic mean, of the 
precision and recall measures is presented. For 
all tennis strokes for both fuzzy and non-fuzzy 
input, the 3DTennisDS dataset achieved better 
results. The highest difference between 3DTen-
nisDS and THETIS datasets reached 8.86% 
for fuzzy forehand, while the lowest difference 
achieved 6.55% for non-fuzzy backhand. While 
for the 3DTennisDS and the Tennis-Mocap data-
sets the highest difference was gained 8.32% for 
fuzzy volley forehand and the lowest one, 3.29%, 
for non-fuzzy backhand.

The obtained classification results have 
shown that in all cases the best results are 
achieved for the 3DTennisDS. Only for this data-
set the maximum F1 result was higher than 90% 

for all fuzzy strokes. The confusion matrices for 
the 3DTennisDS, Tennis-Mocap and the THE-
TIS datasets, with applying input data fuzzifica-
tion process and without it are presented in Fig. 
5–7. As it can be seen, the fuzzification of the 
input data increases the classification results: for 
THETIS 2.21–2.98%, for Tennis-Mocap 4.42–
6.47%, while for 3DTennisDS 5.23–7.44%. In 
case of fuzzy approach, all strokes from 3DTen-
nisDS achieved more effective stroke recogni-
tion, up to 11.47%, in comparison to the THETIS 
dataset. In case of a non-fuzzy input, all strokes 
were better classified from the 3DTennisDS than 
the THETIS with the difference up to 7.65%. It 
can be clearly noticed that for all datasets, the 
following strokes are misclassified: forehand 
with volley forehand and backhand with vol-
ley backhand. On the other hand, the smallest 
percentage of misclassifications was obtained in 
case of the 3DTennisDS.

Analyzing the obtained results, it can be stat-
ed that accurate methods of data acquisition, as 
in the case of an optical motion capture system, 
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Table 3. Obtained precision results for individual strokes
Dataset Type of input Stroke Mean Max Min ±SD

THETIS

Non-fuzzy

Forehand 79.30% 84.21% 74.19% 2.75%
Backhand 77.64% 82.47% 72.63% 2.70%

Volley forehand 73.34% 79.21% 68.32% 3.28%
Volley backhand 72.60% 78.34% 67.00% 3.40%

Fuzzy

Forehand 84.41% 88.54% 81.05% 1.99%
Backhand 82.93% 86.60% 79.59% 2.18%

Volley forehand 79.44% 83.17% 76.24% 2.06%
Volley backhand 79.03% 84.85% 75.49% 2.59%

3DTennisDS

Non-fuzzy

Forehand 85.60% 88.54% 81.05% 2.33%
Backhand 84.46% 87.63% 80.21% 2.53%

Volley forehand 80.96% 84.16% 73.24% 2.57%
Volley backhand 81.17% 85.86% 75.49% 3.60%

Fuzzy

Forehand 92.91% 97.87% 85.42% 5.07%
Backhand 89.60% 93.88% 84.54% 2.75%

Volley forehand 87.22% 92.00% 80.39% 3.46%
Volley backhand 87.62% 92.00% 80.40% 4.25%

Tennis-Mocap

Non-fuzzy

Forehand 81.81% 85.91% 77.86% 2.72%
Backhand 77.40% 81.88% 73.51% 2.94%

Volley forehand 75.49% 80.67% 71.05% 3.20%
Volley backhand 78.49% 82.88% 73.97% 2.94%

Fuzzy

Forehand 85.61% 88.11% 83.69% 3.47%
Backhand 82.18% 85.14% 79.73% 3.75%

Volley forehand 80.29% 83.44% 77.48% 2.79%
Volley backhand 82.61% 85.61% 80.13% 2.81%

Table 4. Obtained recall results for individual strokes
Dataset Type of input Stroke Mean Max Min ±SD

THETIS

Non-fuzzy

Forehand 70.55% 76.92% 65.09% 3.51%
Backhand 76.10% 80.81% 71.88% 2.75%

Volley forehand 79.81% 84.21% 74.19% 2.87%
Volley backhand 76.62% 82.47% 71.13% 3.10%

Fuzzy

Forehand 77.29% 84.16% 72.90% 3.04%
Backhand 81.45% 84.00% 78.57% 1.88%

Volley forehand 84.45% 88.42% 81.25% 1.83%
Volley backhand 82.86% 86.60% 79.38% 2.16%

3DTennisDS

Non-fuzzy

Forehand 79.85% 85.00% 72.64% 4.01%
Backhand 82.38% 85.00% 78.58% 2.20%

Volley forehand 85.83% 89.47% 81.91% 2.26%
Volley backhand 84.21% 87.50% 79.38% 2.58%

Fuzzy

Forehand 86.45% 91.09% 78.85% 4.19%
Backhand 88.27% 92.93% 82.83% 3.37%

Volley forehand 93.09% 98.90% 85.42% 4/91%
Volley backhand 89.56% 93.88% 83.67% 2.88%

Tennis-Mocap

Non-fuzzy

Forehand 74.70% 79.74% 70.78% 3.23%
Backhand 83.04% 86.52% 79.56% 2.23%

Volley forehand 79.21% 84.02% 75.00% 3.12%
Volley backhand 76.85% 81.21% 72.08% 3.20%

Fuzzy

Forehand 79.705 82.89% 76.62% 2.91%
Backhand 86.57% 88.73% 84.29% 1.29%

Volley forehand 83.21% 86.90% 80.82% 2.74%
Volley backhand 81.36% 84.50% 78.52% 2.87%
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influences the classification accuracy. Moreover, 
the applied fuzzification for the more accurate 
motion capture data significantly increases the 
obtained results. The correctness of proposed 

classifier was verified on a basis of Leave-One-
Out Cross-Validation (LOOCV). This method 
allows one to deliver unequivocal informa-
tion about developed model. However, this is a 

Table 5. Obtained F1 score results for individual strokes
Dataset Type of input Stroke Mean Max Min ±SD

THETIS

non-fuzzy

Forehand 74.66% 80.40% 69.35% 3.17%
Backhand 76.88% 81.63% 72.25% 2.68%

Volley forehand 76.44% 81.63% 71.13% 3.02%
Volley backhand 74.55% 80.40% 69.00% 3.24%

fuzzy

Forehand 80.69% 86.29% 77.00% 2.54%
Backhand 82.18% 85.28% 79.38% 1.99%

Volley forehand 76.44% 81.63% 71.13% 3.02%
Volley backhand 74.55% 80.40% 69.00% 3.24%

3DTennisDS

non-fuzzy

Forehand 82.61% 86.73% 76.62% 3.22%
Backhand 83.41% 86.29% 79.38% 2.35%

Volley forehand 83.32% 86.73% 78.97% 2.41%
Volley backhand 82.65% 86.29% 77.39% 3.08%

fuzzy

Forehand 89.55% 94.36% 82.00% 4.50%
Backhand 88.93% 93.40% 83.67% 3.05%

Volley forehand 90.05% 94.84% 82.83% 4.08%
Volley backhand 88.57% 92.93% 82.00% 3.57%

Tennis-Mocap

non-fuzzy

Forehand 78.09% 82.71% 74.15% 3.00%
Backhand 80.12% 84.14% 76.76% 3.56%

Volley forehand 77.48% 82.31% 72.79% 3.16%
Volley backhand 77.66% 82.03% 73.22% 4.06%

fuzzy

Forehand 82.54% 85.42% 80.00% 2.72%
Backhand 84.31% 86.90% 81.94% 2.48%

Volley forehand 81.73% 85.14% 79.32% 3.75%
Volley backhand 81.98% 85.03% 79.32% 3.82%

Figure 5. Confusion matrices for THETIS dataset (a) non-fuzzy input (b) with fuzzy input
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Figure 6. Confusion matrices for 3DTennisDS dataset (a) non-fuzzy input (b) with fuzzy input

computationally complex and time-consuming 
approach involving the root mean squared error 
(RMSE) for n tests:

 

𝑉𝑉 = 𝑣𝑣𝑡𝑡𝑡𝑡| 𝑡𝑡 = 1,⋯ , 𝑇𝑇, 𝑖𝑖 = 1, ,⋯ ,𝑁𝑁    (1) 
 
𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡 = ∑ ∑ 𝑓𝑓𝑡𝑡𝑖𝑖𝑝𝑝(𝑥𝑥) ∗ 𝜔𝜔𝐾𝐾𝐾𝐾     (2) 
 
𝑝𝑝 ∶ 𝐺𝐺(𝑣𝑣𝑡𝑡𝑡𝑡) ⟶ 𝑉𝑉     (3) 
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1.  

 (9)

where: n is the number of tests, yi is true value, ŷl

 denotes predicted value.

The LOOCV values were obtained for the 
THETIS dataset as: 9.05% ± 6.38% and 10.96% 
± 5.48% for non-fuzzy input and input with fuzzi-
fication, respectively. The 3DTennisDS obtained 
8.99% ± 5.81% and 7.74% ± 4.11% for non-fuzzy 
input and input with fuzzification, respectively. 

The Tennis-Mocap achieved 9.46% ± 5.56% and 
8.51% ± 4.46%, respectively.

Comparison with the state-of-the-art 

A great number of studies about tennis move-
ments recognition and classification performed 
on signal, sensor, video, images and three-di-
mensional data may be found in the literature. 
Many types of movements were analyzed, such 
as: forehand, backhand, serve, volley, smash, 
no-hit, as well as various ways of performing 
them. Analyzing the state-of-the-art (Table 6), 
it is obvious that the classification performance 
depends on the type of data. As far as the authors 

Figure 7. Confusion matrices for Tennis-Mocap dataset (a) non-fuzzy input (b) with fuzzy input
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know, the described study is the first application 
of comparing three datasets containing three-
dimensional data, stored in different data types. 
Additionally, the created 3DTennisDS seems to 
collect the precise data that can further be ap-
plied in the classification purposes.

CONCLUSIONS

In this paper the new state-of-the-art 3DTen-
nisDS dataset has been presented. This is the first 
tennis database publicly available that contains 
three-dimensional data of four types of strokes 
captured using the Vicon optical Mocap system 
applying the Pig model. The recorded move-
ments are as follow: backhand, forehand and 
volleys. Apart from the athlete’s silhouette, the 
created dataset also involves the model of tennis 
racket consisting of seven markers, which is an 

additional benefit in classification process. Each 
tennis stroke is stored in a separate c3d file, so 
they are ready for further use. In order to verify 
the potential of the created 3DTennisDS dataset, 
a series of experiments have been performed 
with the ST-GCN classifier. Our dataset has been 
compared to the very well-known THETIS data-
set and to the Tennis-Mocap dataset in the field 
of tennis movements classification. These three 
datasets contain tennis strokes represented in 
various ways. The THETIS dataset was collect-
ed using a markerless motion capture system, 
while the Tennis-Mocap dataset was recorded 
using a marker-based motion capture system 
represented in the form of bvh structure. The last 
one, presented in this paper, was recorded with 
the optical Mocap system using the PiG model, 
which data are stored in the form of c3d files.

The classification of four main tennis strokes 
was performed. Based on the obtained results, 

Table 6. Results comparison with the state-of-the-art 
Data/Dataset Type of input Classified types of tennis move Methos Accuracy Paper

SensorTile Signal

F, B, S DNN 94–97% [18]

F, B

SVM 90.82–98.86%

[19]

NN 98.76–100%

DT 84.69–95.54%

RF 93.75–98.96%

k-NN 87.76–99.44%

IMU Sensor F, B, BS, S, SM Pan Tompkins algorithm 80.60–98.10% [52]

THETIS Video B, V, F, S, SM

LSTM 81.23–89.42%

[11]SVM 51.20%

CRF 86..44%

THETIS
Video

B, V, F
Deep Historical LSTM

62%
[6]

HMDB51 S, SM 54%

THETIS
Video

B
LSTM 70.17–97.67% [10]

KTH V, S, SM

THETIS
Video

B, F, V
SVM

53.08–60.23%
[5]

KTH S, SM 90.65%

KTH Video S, H, NH KLDA 73.34–92.29% [41]

Broadcast Video F, B SVM
90.21% [42]

87.10% [43][44]

Mixed Signal, video F, B, S

SVM
89.69–97.02%

[20]
82.43–88.36%

k-NN
89.41–93.44%

84.73–100%

Vicon Image F, B, NH ST-GCN 64.10–74.30% [21]

Vicon with fuzzy 
input Image F, B, NH

ST-GCN 86.30–87.30% [21]

A3T-GCN 86.90–93.82% [53]

Note: F–forehand, B–backhand, S–serve, BS–backspin, SM–smash, V–volley, H–hit, NH–no hit.
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higher accuracy for tennis action recognition 
has been achieved for the newly created dataset, 
3DTennisDS. It can be stated that the way of cap-
turing data and its precision has a great impact on 
the classification results. What is more, it turned 
out that data fuzzyfication has a positive impact 
on classification performance for analysed datas-
ets. Applying this method improves the accuracy 
for tennis strokes recognition.

Due to the need for accurate data that rep-
resent various sport activities as well as the ob-
tained classification results, it can be concluded 
that the created 3DTennisDS may have an impact 
on the development of scientific research and the 
publication of new articles.
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