PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of the steric effect of the carrier molecule in the polymer inclusion membranes for the separation of cobalt(II), nickel(II), copper(II), and zinc(II) ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, palladium-modified nickel foam substrate was applied to examine ethanol oxidation reaction (EOR) in 0.1 The transport of cobalt(II), nickel(II), copper(II), and zinc(II) ions from chloride solutions across polymer inclusion membranes (PIMs), which 1-heptylimidazole (1̲) or 1-heptyl-2-methylimidazole (2̲) or 1-heptyl-4-methylimidazole (3̲) as the ion carrier was reported. The steric effect for carriers 2̲&enspand 3̲&enspdecreases the transport of all ions except Cu(II). The initial fluxes of metal ions transport across PIMs with the 1̲- 2̲&enspdecrease in the sequence: Cu(II) > Zn(II) > Co(II) > Ni(II), whereas for 3 they were Cu(II) > Zn(II) > Ni(II) > Co(II). The highest recovery values were obtained for Cu(II), this being 99 and 85% for carrier 1̲&enspand 2̲, respectively. In both membranes the degree of deposition of the Zn(II) ions was comparable. Zn(II), Co(II) and Cd(II) ions, which form complexes with coordination numbers 4 and 6, are more easily recovered with the use of carriers 2̲&enspand 3̲. Ni(II) ions, which form complexes with coordination number 6 only, practically remain in the feeding phase. PIMs with alkylimidazoles were characterized by non-contact atomic force microscopy.
Rocznik
Strony
51--56
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wz.
Twórcy
  • UTP University of Science and Technology, Department of Inorganic Chemistry, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland
autor
  • Czestochowa University of Technology, Department General Building Engineering and Building Physics, Faculty of Civil Engineering, ul. Akademicka 3, 42-200 Czestochowa, Poland
Bibliografia
  • 1. Almeida, M.I.G.S., Cattrall, R.W. & Kolev, S.D. (2012). Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). J. Membr. Sci. 415-416, 9-23. DOI: dx.doi.org/10.1016/j.memsci.2012.06.006.
  • 2. Nghiem, L.D., Mornane, P., Potter, I.D., Perera, J.M., Cattrall, R.W. & Kolev, S.D. (2006). Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Membr. Sci. 281, 7-41. DOI: dx.doi.org/10.1016/j.memsci.2006.03.035.
  • 3. Abdul-Halima, N.S., Whittenb, P.G. & Nghiema, L.D. (2013). Characterizing poly (vinyl chloride)/Aliquat 336 polymer inclusion membranes: Evidence of phase separation and its role in metal extraction. Sep. Purif. Technol. 119, 14-18. DOI: dx.doi.org/10.1016/j.seppur.2013.08.038.
  • 4. Sgarlata, C., Arena, G., Longo, E., Zhang, D., Yang, Y. & Bartsch, R.A. (2008). Heavy metal separation with polymer inclusion membranes. J. Membr. Sci. 323, 444-451. DOI: dx.doi. org/10.1016/j.memsci.2008.07.004.
  • 5. Radzymińska-Lenarcik, E. (2008). Search for the possibility of utilizing the differences in complex-forming capacities of alkylimidazoles for selective extraction of some metal ions from aqueous solutions. Pol. J. Chem. Technol. 10, 73-78. DOI: 10.2478/v10026-008-0017-3.
  • 6. Lenarcik, B. & Rauckyte, T. (2004). The influence of alkyl length on extraction equilibria of Ni(II) complexes with 1-alkylimidazoles in aqueous solution/organic solvent systems. Sep. Sci. Technol. 39, 3353-3372. DOI: 10.1081/SS-200028915.
  • 7. Radzymińska-Lenarcik, E. (2007). The influence of the alkyl chain length on extraction equlibrium of Cu(II) complexes with 1-alkylimidazoles in aqueous solution/ organic solvent systems,. Solv. Extr. Ion Exch. 25, 53-64. DOI:10.1080/07366290601067572.
  • 8. Gheaedi, M., Niknam, K., Shokrollahi, A., Niknam, E., Gheadi, H. & Soylak, M. (2008). A solid extraction procedure for Fe3+, Cu2+ and Zn2+ ions on 2-phenyl-1H-benzo[d] imidazole loaded on Triton Z-100 coated polyvinyl chloride. J. Hazard. Mat. 158, 131-136. DOI: dx.doi.org/10.1016/j.jhazmat.2008.01.037.
  • 9. Lenarcik, B., Adach, A. & Radzyminska-Lenarcik, E. (1999). The infl uence of steric effect and alkyl chain length on the extraction of the complexes of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with 1-alkyl-2-methylimidazole. Pol. J. Chem. 73, 1273-1281.
  • 10. Lenarcik, B. & Kierzkowska, A. (2006). The influence of alkyl chain length and steric effect on extraction of zinc(II) complexes with 1-Alkyl-2-methylimidazoles. Solv. Extr. Ion Exch. 24, 433-445. DOI: 10.1080/07366290600646962.
  • 11. Radzymińska-Lenarcik, E. (2007). Effect of alkyl chain length on the extraction of copper(II) complexes with 1-alkyl-2-methylimidazoles. Sep. Sci. Technol. 42, 2661-2675. DOI: 10.1080/01496390701515003.
  • 12. Ulewicz, M. & Radzyminska-Lenarcik, E. (2011). Transport of metal ions across polymer inclusion membrane with 1-alkylimidazole. Phys. Probl. Miner. Process. 46, 199-130.
  • 13. Radzyminska-Lenarcik, E. & Ulewicz, M. (2012). Selective transport of Cu(II) across a polymer inclusion membrane with 1-alkylimidazole from nitrate solutions. Sep. Sci. Technol. 47, 1113-1118. DOI:10.1080/01496395.2011.646378.
  • 14. Ulewicz, M. & Radzyminska-Lenarcik, E. (2012). Supported liquid (SLM) and polymer inclusion (PIM) membranes pertraction of copper(II) from aqueous nitrate solutions by 1-hexyl-2-methylimidazole. Sep. Sci. Technol. 47, 1383-1389. DOI: 10.1080/01496395.2012.672523.
  • 15. Radzyminska-Lenarcik, E. & Ulewicz, M. (2014). The use of 1-alkylimidazoles for selective separation of zinc ions in the transport process across a polymeric inclusion membrane. Phys. Probl. Miner. Process. 50, 131-142. DOI: 10.5277/ppmp140112.
  • 16. Ulewicz, M. & Radzyminska-Lenarcik, E. (2012). Application of supported and polymer membrane with 1-decyl-2-methylimidazole for separation of transition metal ions. Phys. Probl. Miner. Process. 48, 91-102.
  • 17. Sundberg, R.J. & Martin, R.B. (1974). Interactions of Histidine and other Imidazole Derivatives with Transition Metal Ions in Chemical and Biological System. Chem. Rev. 74, 471-517. DOI: dx.doi.org/10.1155%2F2007%2F96536.
  • 18. Pearson, R.G. (1968). Hard and Soft Acids and Bases, HSAB, Part I. Fundamental principles. J. Chem. Edu. 45, 581-586. DOI: dx.doi.org/10.1021% 2Fed045p581.
  • 19. Lenarcik, B. & Ojczenasz, P. (2002). The influence of the size and position of the alkyl groups in alkylimidazole molecules on their acid - base properties. J. Heterocycl. Chem. 39, 287-290. DOI: 10.1080/07366290601067572.
  • 20. Lenarcik, B. & Kierzkowska, A. (2004). The Influence of Alkyl Chain Length and Steric Effect on Stability Constants and Extractability of Zn(II) Complexes with 1-Alkyl-4-methylimidazoles. Sep. Sci. Technol. 39, 3485-3508. DOI: 10.1081/ SS-200033148.
  • 21. Radzyminska-Lenarcik, E. (2010). The influence of steric effect, alkyl chain length and donor number of solvents on the ex-traction of copper(II) complexes with 1-alkyl-4-methylimidazoles. Solv. Ext. Ion Exch. 28, 636-652. DOI: 10.1080/07366299.2010.499292.
  • 22. Radzyminska-Lenarcik, E. (2008). Influence of the steric hindrance, ligand hydrophobicity and DN of solvents on structure and extraction of Cu(II) complexes of 1-alkyl- -2-ethylimidazoles. Sep. Sci. Technol. 43, 794-814. DOI: 10.1080/01496390701870655.
  • 23. Radzyminska-Lenarcik, E. (2009). The influence of alkyl chain length in 1,2-dialkylimidazoles on the extraction capacity and structure of their copper(II) complexes. Sep. Sci. Technol. 44, 954-970. DOI: 10.1080/01496390802437255.
  • 24. Lenarcik, B. & Barszcz, B. (1980). Stability and Structure of Transition Metal Complexes with Azoles in Aqueous Solutions. Part XXI. A Comparison of Complex-Forming of 1,2-Dimethylimidazole with that of Other 1,3-Diazoles. J. Chem. Soc. Dalton Trans. 24-28. DOI: 10.1039/DT9800000024.
  • 25. Lenarcik, B., Kurdziel, K. & Czopek, R. (1986). Search for optimum conditions of extraction of metal complexes with alkylimidazoles. III. Structure-extractability relationships for 1,4-dimethylimidazole complexes of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II). Solv. Ext. Ion Exch. 4, 165-182. DOI: 10.1080/07366298608917860.
  • 26. Ulewicz, M. & Radzyminska-Lenarcik, E. (2014). Application of polymer and supported membranes with 1-decyl-4-methylimidazole for pertraction of transition metal ions. Sep. Sci. Technol. 49, 1713-1721. DOI: 10.1080/01496395.2014.906453.
  • 27. Pernak, J., Krysinski, J. & Skrzypczak, A. (1987). Bakterizide Wirkung von Iminiumverbindungen, A. Tenside Surfact. Det. 24, 276-286.
  • 28. Ulewicz, M., Szczygelska-Tao, J. & Biernat, J.F. (2009). Selectivity of Pb(II) transport across polymer inclusion membranes doped with imidazole azothiacrown ethers. J. Membr. Sci. 344, 32-38. DOI: dx.doi.org/10.1016/j.memsci.2009.07.031.
  • 29. Ulewicz, M., Sadowska, K. & Biernat, J.F. (2007). Facilitated transport of Zn(II), Cd(II) and Pb(II) across polymer inclusion membrane doped with imidazole azocrown ethers. Desal. 214, 352-364. DOI: dx.doi.org/10.1016/j.desal.2006.12.006.
  • 30. Ajji, Z. & Ali, A.M. (2010). Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting. J. Hazard. Mat. 173, 71-74. DOI: dx.doi.org/10.1016/j.jhazmat.2009.08.049.
  • 31. Ulewicz, M., Sadowska, K. & Biernat, J.F. (2007). Selective transport of Pb(II) across polymer inclusion membrane using imidazole azocrown ethers as carriers. Phys. Probl. Miner. Process. 41, 133-143.
  • 32. Danesi, P.R. (1984-85). Separation of metal species by supported liquid membranes. Sep. Sci. Technol. 19, 857-894. DOI: 10.1080/01496398408068598.
  • 33. Visser, H.C., Reinhoudt, D.N. & de Jong, F. (1994). Carriermediated transport through liquid membranes. Chem. Soc. Rev. 23, 75-81. DOI: 10.1039/CS9942300075.
  • 34. Salazar-Alvarez, G., Bautista-Flores, A.N., San Miguel, E.R., Muhammed, M. & Gyves, J. (2005). Transport characterization of a PIM system used for the extraction of Pb(II) using D2EHPA as carrier. J. Membr. Sci. 250, 247-257. DOI: 10.1016/j.memsci.2004.09.048.
  • 35. Radzyminska-Lenarcik, E., & Witt, K. (2015). The infl uence of alkyl chain length and steric effect on stability constants and extractability of Co(II) complexes with 1-alkyl-2-methylimidazoles. Sep. Sci. Technol., 50, 676-682. DOI: 10.1080/01496395.2014.959600.
  • 36. Lenarcik, B. & Ojczenasz, P. (2004). Investigation of the stability constants of Co(II) complexes with a homologous series of 1-alkylimidazoles in aqueous solution by using a partition method with several solvents. Sep. Sci. Technol., 39, 199-226.DOI: 10.1081/SS-120027409.
  • 37. Lenarcik, B. & Kierzkowska, A. (2004). The influence of alkyl length on stability constants of Zn(II) complexes with 1-alkylimidazoles in aqueous solutions and their partition between aqueous phase and organic solvent. Solv. Ext. Ion Exch. 22, 449-471. DOI: 10.1081/SEI-120030398.
  • 38. Gâzo, J., Bersuker, I.B., Garaj, J., Kabešová, M., Kohout, J., Langfelderowá, H., Melník, M., Serator, M. & Valach, F. (1976). Plasticity of the coordination sphere of Copper(II) complexes, its manifestation and causes. Coord. Chem. Rev. 19, 253-297. DOI: dx.doi.org/10.1016/S0010-8545(00)80317-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05d36db3-83ec-4b51-a734-14c5178eccac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.