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Abstract: The article presents the use of multiple regression method to identify added wave resistance. 

Added wave resistance was expressed in the form of a four-state nominal function of: “thrust”, “zero”, 

“minor” and “major” resistance values. Three regression models were developed for this purpose: a 

regression model with linear variables, nonlinear variables and a large number of nonlinear variables. 

The nonlinear models were developed using the author's algorithm based on heuristic techniques. The 

three models were compared with a model based on an artificial neural network. This study shows that 

non-linear equations developed through a multiple linear regression method using the author’s algorithm 

are relatively accurate, and in some respects, are more effective than artificial neural networks. 
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INTRODUCTION 

Reaching the required service speed on board a ship is a serious hydromechanical question. 

A ship operating speed depends, among others on the parameters and operating conditions 

of the propulsion system and total hull resistance. Arribas (2007) and Bhattacharyya (1978) 

noticed that one component of total hull resistance is additional wave resistance, which is: 

• ship motion at high sea,  

• around 30-50% of the ship’s total resistance, 

• a substantial reduction of service speed, 

• dependent on hull dimensions and shape, as well as other factors. 

Therefore, the prediction of any added resistance is a real challenge for the naval architects, 

who have to focus on any economic requirements connected to the selection of propulsion 

system parameters, fuel consumption and voyage time estimate. An assessment of added 

resistance in waves is also an essential element of various computer systems for the planning 

of a voyage. The effectiveness of such a system operation depends, first and foremost, on the 

accuracy of the approximation of various ship characteristics based on the simplified data, 

such as the main hull dimensions, state of loading, ship motion parameters and statistical 

wave parameters. 

The added resistance of a ship in waves is difficult to determine and usually is predicted by 

the use of a model or numerical methods (Sigmund et al., 2018; Ji et al., 2017; Duan et al., 

2013). An accurate prediction of added resistance requires a large amount of input data, such 

as vessel hull shape and dimensions, as well as wave conditions (Rawson et al 2001; Watson 

1998) .  

The mean added wave resistance usually is calculated using a function which initially 

describes the resistance contribution from a regular sine wave. Then, applying the 

superposition principle to the spectral distribution of the irregular wave, the mean resistance 

of an irregular (statistical) wave is calculated. The added resistance of a regular wave is 
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calculated using various methods, most frequently the Gerritsma–Beukelman method 

(Gerritsma and Beukelman, 1972) or the Boese method.  

Alternatively, simplified models that enable us to identify the added wave resistance  are 

sometimes used. In these methods, the additional wave resistance values have linguistic form, 

eg "small resistance" - "high resistance". These methods mean we can estimate the added 

wave resistance level and can be used to develop a mathematical model based on 

observations carried out in real-life conditions on the ship. The advantage of this solution is 

the ability to develop a model to assess the added wave resistance without having to measure 

the phenomenon on a ship. This model could have practical application for navigation route 

optimization systems. 

The author’s article (Cepowski, 2007) presents an application of artificial neural networks to 

identify additional wave resistance depending on ship motion and wave parameters. This article 

elaborated on investigations of artificial neural networks which make it possible to identify 

additional wave resistance expressed in the form of a four-state nominal function equal to: 

• thrust, 

• lack of the resistance, 

• small resistance value, 

• large resistance value. 

The artificial neural networks elaborated here were characterized by high accuracy within a 

wide range of ship motion and wave parameters values. Only 86 of the 2,646 cases were 

incorrectly identified. The disadvantage of this method was that it was complicated and difficult 

to interpret the mathematical models. 

Other methods can also be used to identify any phenomenon occurrence, e.g. linear or logistic 

probability models.  

The occurrence or absence of a predicted event are indicated in a logistic probability model. 

This model enables the user to calculate event probability and is often used to analyse 

surveys. The limitation of this method is a binary dependent variable, where the output can 

take only two values, "0" and "1". This method cannot be used for more than two various 

states, and in such cases, can be only applied to a linear probability model. Other advantages 

of the linear probability model are the interpretability of results and computing speed than 

compared to the logistic probability model.  

A linear probability model often fits equally well, and is almost the same as logistic model. The 

probability linear model offers an unlimited number of the states. As shown in (Hellevik 2007), 

logistic and linear regression models often display almost identical results, but the logistic 

model estimates are much more complicated to interpret than the linear. 

Consequently, the aim of this article was to develop an added wave resistance recognition 

model, simply by the use of regression methods alone and to also compare research results 

with those obtained using an artificial neuron theory model based on work presented in 

(Cepowski, 2007). 

It was not possible to use a logistic regression method for this purpose as the added wave 

resistance took up 4 states. Therefore, a linear regression model was used to identify added 

wave resistance in these studies. Additionally, a heuristic algorithm to semi-automatically 

discover the best nonlinear equation was created by author for this purpose. 

 

RESEARCH METHOD  

To achieve the goals set out in the research, the same assumptions as in (Cepowski, 2007) 

have been made, i.e.: 

• the investigations were performed for a B-517 bulk carrier in ballast loading condition with 

the following parameters: 

o Overall length: Lc = 198 m 

o Length between perpendiculars: Lpp = 185 m 
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o Breadth: B = 24.4 m 

o Design draught: T = 11 m 

o Displacement: D = 18069 t 

• the following operational parameters of the ship were taken into account: 

o ship speed V ranging from 0 to 15 knots, every 5 knots 

o wave encounter angle b = 0° (following waves), 15°, 30°, 60°, 75°, 90°, 105°, 120°, 150° 

175°, 180° (heading waves) 

o significant wave height h ranging from 1 to 9 m, every second m 

o characteristic wave period p = 6 ÷ 20 s, every second s. 

• added wave resistance was expressed in the form of a four-state nominal function Rw equal 

to: 

o “0” – thrust (for additional wave-generated resistance less than 0 kN) 

o “1” – zero resistance (for resistance values from 0 to 30 kN) 

o “2” – minor resistance value (for resistance values from 30 to 100 kN) 

o “3” – major resistance value (for resistance values exceeding 100 kN). 

F functions which serve to identify added resistance, can be created in accordance with the 

following formula: 

���, �, �, ℎ�
	
→ ��      (1) 

where: 

X – set of input operational parameters such as ship speed V, wave encounter angle b, 

characteristic wave period p and significant wave height h 

RW – additional wave resistance expressed in the form of a four-state nominal function 

f – a regression function search, enabled to identify added resistance RW. 

A Multiple Linear Regression, and a method developed by the author were applied to discover 

function f. The best combinations of the ship operational parameters were randomly searched 

through all their possible combinations in the author’s method. The general algorithm scheme 

is shown in fig 1. 

 

 
Fig. 1. The general algorithm scheme, where: RW is estimated added wave resistance, 

V, b, h, t – operational parameters, f is a formula to calculate added wave resistance, m is the 

number of formulas 
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The base function collection included 360 arrays of nonlinear, exponential., power and  

logarithmic functions. NdCurveMaster software was developed on the basis of this algorithm 

by the author. The software (ndCurveMaster ver 3.2 2017) was applied to develop regression 

equations presented in this paper. 

 

RESULTS 

Three models of regression were developed to compare research results with those presented 

in (Cepowski) only by the use of: 

• A multiple Linear Regression method, 

• An algorithm developed by the author (presented in Figure 1), 

• An algorithm developed by the author for a large number of independent variables 

A significant level of alpha was equal to 0.05 in the investigations. 

The most effective regression equations for additional added resistance identification were 

found to be as follows: 

• with the use of Multiple Linear Regression method: 

RW = a0 + a1 · b + a2 · V + a3 · p + a4 · b · V + a5 · b · h + a6 · b · p + a7 · V · h + a8 · h · p + a9 · 

b · V · h + a10 · V · h · p + a11 · b · V · h · p 
(2) 

• with the use of the author's algorithm: 

RW = a0 + a1 · b4.7 + a2 · V1/5 + a3 · h-0.3 + a4 · p14 + a5 · b1.2 · V1/5 + a6 · b2.2 · h1/6 + a7 · b1.3 · 

p2.1 + a8 · V1.2 · h0.4 + a9 · V1.8 · exp�p�-4 + a10 · 1/4h · ln6p + a11 · b7 · V0.7 · h1.2 + a12 · V · h1/7 · 

p0.4 + a13 · b4.8 · V0.6 · h0.4 · p1/2 

(3) 

• with the use of the author's algorithm for a large number of independent variables: 

RW = a0 + a1 · b6 + a2 · V1/4 + a3 · ln3p + a4 · b1.6 · V1/4 + a5 · b · h0.6 + a6 · b1.2 · p1.9 + a7 ·  

V0.9 · h2.6 + a8 · V0.9 · p1/2 + a9 · ln7h · ln3p + a10 · b5.6 · V0.8 · h0.9 + a11 · V1/21 · 1/2h  · p1.5 +  

a12 · b3.5 · V0.8 · h  · p1/15 + a13 · 1/2V  · 1/2h  · p 2 + a14 · b3.8 · V1/3 · h1/9 + a15 · b1.8 · V0.8 · h1.6 + 

a16 · b1.5 · V1/4 + a17 · V0.8 · h1/17 · exp�p� -4 + a18 · b8 · p1/17 + a19 · h-6 + a20 · b2 · h1/21 +  

a21 · b1.2 · h0.6 + a22 · h-3 + a23 · b3 + a24 · b0.9 · p2.1 + a25 · h3.2 · p0.9 + a26 · b12 · V1.4 · h1.6 

(4) 

where: 

Rw – added wave resistance in the form of a four-state nominal variable: '0' – resistance thrust, 

'1'– zero resistance, '2'– minor resistance, '3'– major resistance 

V – ship’s speed [kn], 

b – wave encounter angle [deg], 

p – characteristic wave period [s], 

h – significant wave height [m], 

a1, …, n – coefficients shown in Tab. 4 – 6. 

Tables 1- 6 present variance and regression analysis of the above equations. The values of 

standard SE and the R-squared errors relating to elaborated relationships (2) – (4) are given 

in Tab. 7.  An analysis of variance presented in Tables 1-3 shows that all equations are 

statistically significant. Regression analysis presented in Tables 4-6 show that all variables in 

equations (2) - (4) are also statistically significant. Table 7 shows that the equation (2) is 

characterized by satisfactory accuracy, while equations (3) and (4) are characterized by good 

accuracy. 

 

Table 1 

Analysis of equation variance (2), where: df – degrees of freedom, SS – sum of squares, MS - 

mean square 

 df SS MS F test p-value 

Regression 11 1619.297 147.2088 585.0595 5.55E-16 

Errors 2452 616.956 0.251613   

Total 2463 2236.253    
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Table 2 

Analysis of equation variance (3), where: df – degrees of freedom, SS – sum of squares, MS - 

mean square 
 df SS MS F test p-value 

Regression 13 1910.69084 146.976218 1106.06194 5.55E-16 

Errors 2450 325.561996 0.1328824   

Total 2463 2236.25284    

 

Table 3 

Analysis of equation variance (4), where: df – degrees of freedom, SS – sum of squares, MS - 

mean square 

 df SS MS F test p-value 

Regression 26 1981.717 76.21989 729.7518 5.55E-16 

Errors 2437 254.5357 0.104446   

Total 2463 2236.253    

 

Table 4 

Regression analysis for the equation (2) 

 
Value of a Std Error t-Value P > |t| 

a0 -2.41E-01 0.083968 -2.87E+00 0.004109 

a1 0.012815 0.000928 13.80582 8.27E-42 

a2 0.047987 0.006821 7.035463 2.57E-12 

a3 0.040385 0.006559 6.157143 8.63E-10 

a4  -2.23E-04 6.68E-05 -3.34E+00 0.00084 

a5 0.00176 9.12E-05 19.29056 2.60E-77 

a6  -6.87E-04 5.54E-05 -1.24E+01 2.65E-34 

a7  0.010699 0.001609 6.64953 3.61E-11 

a8  -4.85E-03 0.000668 -7.25E+00 5.43E-13 

a9  -1.11E-04 1.64E-05 -6.74E+00 1.93E-11 

a10 -4.91E-04 0.000105 -4.67E+00 3.2E-06 

a11 6.4E-06 9.62E-07 6.651474 3.57E-11 

 

Table 5 

Regression analysis for the equation (3) 

 Value of a Std Error t-Value P > |t| 

a0 0.2490437 0.0615499 4.0462083 0.0000537 

a1 -1.01E-10 2.32E-12 -4.36E+01 0.00E+00 

a2 0.9500981 0.027393 34.6839572 8.59E-215 

a3 -6.58E-01 0.0856514 -7.68E+00 2.28E-14 

a4 6.12E-20 1.86E-20 3.2891706 0.0010191 

a5 -2.76E-03 0.000082 -3.37E+01 9.57E-205 

a6 0.0000614 8.84E-07 69.4327879 0.00E+00 

a7 -4.65E-06 1.46E-07 -3.19E+01 4.52E-187 

a8 0.0138254 0.0018719 7.3857777 2.07E-13 

a9 -4.24E+07 9.72E+06 -4.36E+00 0.0000135 

a10 0.004668 0.0003298 14.1552743 8.78E-44 

a11 -5.70E-18 3.31E-19 -1.72E+01 6.65E-63 

a12 -1.80E-02 0.0020314 -8.87E+00 1.34E-18 

a13 1.40E-12 6.42E-14 21.8819682 4.26E-97 
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Table 6 

Regression analysis for the equation (4) 

 Value of a Std Error t-Value P > |t| 

a0 0.447867 0.063296 7.075788 1.93E-12 

a1 -1.10E-12 4.95E-14 -2.22E+01 6.19E-100 

a2 0.644304 0.029564 21.79334 2.38E-96 

a3 -1.62E-02 0.002715 -5.97E+00 2.80E-09 

a4 -1.19E-02 0.000767 -1.55E+01 1.47E-51 

a5 -1.81E-02 0.001332 -1.36E+01 1.08E-40 

a6 -5.83E-05 3.7E-06 -1.56E+01 1.76E-52 

a7 0.000243 2.38E-05 10.21183 5.30E-24 

a8 -1.37E-02 0.001193 -1.15E+01 1.21E-29 

a9 0.000199 6.78E-05 2.93505 0.003366 

a10 -9.28E-14 5.59E-15 -1.66E+01 1.23E-58 

a11 0.024201 0.001563 15.48334 1.19E-51 

a12 3.44E-09 1.73E-10 19.93332 5.07E-82 

a13 0.004845 0.000509 9.513478 4.26E-21 

a14 1.16E-08 6.94E-10 16.7592 9.45E-60 

a15 -2.51E-06 1.34E-07 -1.87E+01 4.39E-73 

a16 0.017749 0.00119 14.91465 3.32E-48 

a17 -4.95E+08 1.02E+08 -4.87E+00 1.2E-06 

a18 1.63E-17 7.50E-19 21.79234 2.42E-96 

a19 6.074821 0.927909 6.546787 7.14E-11 

a20 -2.80E-04 2.94E-05 -9.53E+00 3.77E-21 

a21 0.008725 0.000476 18.32714 2.17E-70 

a22 -6.69E+00 0.968204 -6.91E+00 6.17E-12 

a23 4.6E-06 2.81E-07 16.41442 1.64E-57 

a24 0.000103 9.2E-06 11.20518 1.88E-28 

a25 -8.60E-05 2.83E-05 -3.04E+00 0.002413 

a26 2.14E-30 2.61E-31 8.201639 3.79E-16 

 

Table 7 

Statistics of the elaborated relationships (2) – (4) 

 Equation (2) Equation (3) Equation (4) 

R-Squared 0.724112 0.854416 0.886178 

Adjusted R-Squared 0.722874 0.853644 0.884963 

Multiple R-Squared 0.850948 0.924346 0.94137 

Standard error SE 0.501611 0.36453 0.323182 

 

An identification of added wave resistance was carried out by rounding the actual values 

determined by means of equations (2) - (4) to integer values: 0, 1, 2, 3. 

Identification results were compared with reference values and artificial neural network 

statistics presented in (Cepowski, 2007) and shown in Fig. 2.  
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Fig. 2. Statistics applied to classification problems of the artificial neural network and 

regression (2) – (4) identifying the additional wave-generated resistance 

 

CONCLUSIONS 

The presented research proves that it is possible to carry out an identification simply by the 

use of a multiple linear regression method. But, regressions developed simply by the use of 

multiple linear regression methods are not particularly accurate. Only adding non-linear 

variables to the model, and increasing their number, leads to more accurate results. Heuristic 

techniques developed by the author for this purpose were found to be effective. 

A logistic regression method only enabled the identification of a binary variable where the 

output can take only two values, "0" and "1". In contrast, the MLR method allows the 

identification of a multi-state variable where the output can take a number of values. In this 

study a four-state variable was successfully identified using a MLR-based method. 

Classification statistics of linear regression equations are less effective than the artificial neural 

network statistics. The most accurate regression equation found 326 erroneous solutions, 

while the neural network error only displayed 88 solutions (almost three times less). Which 

offers vast advantages using artificial neural networks over a multiple linear regression 

method. 

Without a doubt, the form of regression equation developed through the use of multiple linear 

regression is clear, and it is simple to interpret the influence of individual variables in regression 

equations. The interpretation of regression equation coefficients is less difficult than the 

coefficients of the artificial neural network. Through these methods, discovering new 

phenomena is possible on the basis of regression equations. 

A regression equation has a simpler form, fewer elements and is faster to calculate than the 

neural network, and this is vitally important from point of view of numerical calculations. 

For example, the presented ANN contains almost 140 coefficients, while equation (4) has only 

27. 

The probability of overfitting is less likely during the development of regression equations. 

There was no need to control and prevent overfitting, because the number of data was found 

to be larger in the presented studies.  

However, models developed using artificial neural networks always require the occurrence of 

overfitting. About 25% of the data is lost due to the need to verify the occurrence of overfitting. 

These investigations confirm (Hevelik, 2017), that identification accuracy depends on data 

model fitting in a logistic or linear regression method. 
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Equations (2) and (3) have a similar number of elements, ie equation (2) - 12 and equation (3) 

- 14 coefficients. Independent variables in equation (2) are linear, while in equation (3) they 

are non-linear. This non-linearity meant we were able to obtain practically twice as much 

identification accuracy, which is shown in Fig. 2. The main reason for this is the non-linear 

influence of operating parameters on additional wave resistance. 
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