PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of YSZ coatings on nickel-based alloys by anodic electrophoretic deposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, YSZ coatings were prepared on nickel-based alloy substrates by anodic electrophoretic deposition. The YSZ suspension solution was obtained under stirring and ultrasonic treatment, in which the anhydrous ethanol and acetylacetone were used as the dispersion medium and ammonium polyacrylate was used as the dispersant of the suspension. The effects of different deposition voltage and deposition time on YSZ coating were investigated. Meantime, the microstructure of the coating surface was observed by metallographic microscope. It was found that the high-quality YSZ coating could be obtained by deposition at 60 V for 2–3 min. Finally, the effect of sintering temperature on coating quality was investigated by X-ray diffractometer and scanning electron microscopy. The results showed that the YSZ coating bonded closely with the substrate after sintering at 1200 °C, and the porosity of the YSZ coating increased after sintering.
Rocznik
Strony
8--11
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wz.
Twórcy
autor
  • College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
  • Shanghai Shocktorm Ocean Engineering Co Ltd, Shanghai 201306, China
  • College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
  • Shanghai Shocktorm Ocean Engineering Co Ltd, Shanghai 201306, China
autor
  • Shanghai Shocktorm Ocean Engineering Co Ltd, Shanghai 201306, China
autor
  • College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
Bibliografia
  • 1. Ege, D., Duru İ., Kamali, A. R., & Boccaccini, A. R. (2017). Nitride, zirconia, alumina, and carbide coatings on Ti6Al4V femoral heads: Effect of deposition techniques on mechanical and tribological properties. Adv. Eng. Mater. Pap. 19(11), 1700177. DOI: 10.1002/adem.201700177.
  • 2. Cao, X. Q., Vassen, R., & Stoever, D. (2004). Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. Pap. 24(1), 1–10. DOI: 10.1016/s0955-2219(03)00129-8.
  • 3. Chen, L. B. (2006). Yttria-stabilized zirconia thermal barrier coatings - a review. Surf. Rev. Lett. Pap. 13(05), 535–544. DOI: 10.1142/s0218625x06008670.
  • 4. Amiri, H., Mohammadi, I., & Afshar, A. (2017). Electrophoretic deposition of nano-zirconia coating on AZ91D magnesium alloy for bio-corrosion control purposes. Surf. Coat. Technol. Pap. 311, 182–190. DOI: 10.1016/j.surfcoat.2016.12.103.
  • 5. Fornalczyk, G., Sommer, M., & Mumme, F. (2017). Yttria-Stabilized Zirconia Thin Films via MOCVD for Thermal Barrier and Protective Applications in Injection Molding. Key Engineering Materials. Trans Tech Publications Ltd. Pap. 742, 427–433 DOI: 10.4028/www.scientific.net/kem.
  • 6. Bobzin, K., Schläfer, T., Warda, T., Brühl, M., & Linke, T. F. (2011). Improving long term oxidation protection for γ-TiAl substrates. Mater. Werkst. Pap. 42(11), 1013–1018. DOI: 10.1002/mawe.201100827.
  • 7. Di Girolamo, G., Blasi, C., Pagnotta, L., & Schioppa, M. (2010). Phase evolution and thermophysical properties of plasma sprayed thick zirconia coatings after annealing. Ceram. Int. Pap. 36(8), 2273–2280. DOI: 10.1016/j.ceramint.2010.07.035.
  • 8. Schulz, U., Terry, S. G., & Levi, C. G. (2003). Microstructure and texture of EB-PVD TBCs grown under different rotation modes. Mater. Sci. Eng. A. Pap. 360(1–2), 319–329. DOI: 10.1016/s0921-5093(03)00470-2.
  • 9. Bačić, I. (2016). Corrosion Protection of AISI 316L Stainless Steel with the Sol- Gel Yttria Stabilized ZrO2 Films: Effects of Sintering Temperature and Doping. Inter. J. Electrochem. Sci. Pap. 11(11), 9192–9205. DOI: 10.20964/2016.11.04.
  • 10. Albayrak, O., El-Atwani, O. & Altintas, S. (2008). Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition. Surf. Coat. Technol. Pap. 202(11), 2482–2487. DOI: 10.1016/j.surf-coat.2007.09.031.
  • 11. Corni, I., Ryan, M. P., & Boccaccini, A. R. (2008). Electrophoretic deposition: From traditional ceramics to nanotechnology. J. Eur. Ceram. Soc. Pap. 28(7), 1353–1367. DOI: 10.1016/j. jeurceramsoc.2007.12.
  • 12. Besra, L. & Liu, M. (2007). A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. Pap. 52(1), 1–61. DOI: 10.1016/j.pmatsci.2006.07.001.
  • 13. Xiao, X. F. & Liu, R. F. (2006). Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Mater Lett. Pap. 60(21–22), 2627–2632. DOI: 10.1016/j. matlet.2006.01.048.
  • 14. Bai, M., Guo, F. & Xiao, P. (2014). Fabrication of thick YSZ thermal barrier coatings using electrophoretic deposition. Ceram. Int. Pap. 40(10), 16611–16616. DOI: 10.1016/j. ceramint.2014.08.021.
  • 15. Khanali, O., Rajabi, M., Baghshahi, S. & Ariaee, S. (2016). Suspension medium’s impact on the EPD of nano-YSZ on Fecralloy. Surf. Eng. Pap. 33(4), 310–318. DOI: 10.1080/02670844.2016.1259730.
  • 16. Pantoja-Pertegal, J .L., Díaz-Parralejo, A., Macías-García, A., Sánchez-González, J. & Cuerda-Correa E. M. (2021). Design, preparation, and characterization of Yttria-Stabilized Zirconia (YSZ) coatings obtained by electrophoretic deposition (EPD). Ceram. Int. Pap. 47(10), 13312–13321. DOI: 10.1016/j. ceramint.2020.12.279.
  • 17. Borojeni, I. A, Raissi, B., Maghsoudipour, A., Kazemzad, M. & Marzbanrad, E. (2009). Aging Behavior of Yttria Stabilized Zirconia (YSZ) in Non Aqueous Suspensions for Electrophoretic Deposition Application. Key Eng. Mate. Pap. 412, 279–285. DOI: 10.4028/www.scientific.net/kem.
  • 18. Das, D., Bagchi, B. & Basu, R. N. (2017). Nanostructured zirconia thin film fabricated by electrophoretic deposition technique. J. Alloy Compd. Pap. 693, 1220–1230. DOI: 10.1016/j. jallcom.2016.10.088.
  • 19. Nazari, N. & Aghajani, H. (2019). Suspension chemistry and electrophoretic deposition of YSZ-NiO nano-composite films on an iron-nickel based superalloy. J. Disper. Sci. Technol. Pap. 1–14. DOI: 10.1080/01932691.2019.1649154.
  • 20. Li, C. L., Wang, W., Tan, S. L. & Song, S.G. (2014). Bond strength and oxidation resistance of YSZ/(Ni, Al) composite coatings. Surf. Eng. Pap. 30(9), 619–623. DOI: 10.1179/1743294414y.0000000295.
  • 21. Ahmadi, M. & Aghajani, H. (2017). Suspension characterization and electrophoretic deposition of Yttria-stabilized Zirconia nanoparticles on an iron-nickel based superalloy. Ceram. Int. Pap. 43(9), 7321–7328. DOI: 10.1016/j.ceramint.2017.03.035.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05ccd300-bf2f-4eb8-bbf0-aa51356671e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.