PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cosmic Airburst on Developing Allerød Substrates (Soils) in the Western Alps, Mt. Viso Area

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although much has been written about a cosmic impact event in the Western Alps of the Mt. Viso area, the event closely tied with the Younger Dryas Boundary (YDB) of 12.8 ka and onset of the Younger Dryas (YD), the affected land surface is considered to contain a similar black mat suite of sediment found on three continents. While work elsewhere has focused on recovered sediment from lake and ice cores, buried lacustrine/alluvial records, and surface glacial and paraglacial records, no one has traced a mountain morphosequence of deposits with the objective of investigating initial weathering/soil morphogenesis that occurred in ice recessional deposits up to the YDB when the surface was subjected to intense heat, presumably, as hypothesized by Mahaney et al. (2016a) from a cosmic airburst. With the land surface rapidly free of ice following glacial retreat during the Bølling-Allerød interstadial, weathering processes ~13.5 to 12.8 ka led to weathering and soil morphogenesis in a slow progression as the land surface became free of ice. To determine the exposed land character in the mid- to late-Allerød, it is possible to utilize an inverted stratigraphic soil morphogenesis working backward in time, from known post-Little Ice Age (LIA) (i.e. time-zero) through LIA (~0.45 to ~0.10 ka), to at least the middle Neoglacial (~2 ka), to answer several questions. What were the likely soil profile states in existence at the end of the Allerød just prior to the cosmic impact/airburst (YDB)? Assuming these immature weathered regolith sections of the Late Allerød approximated the <1 ka old profiles seen today, and assuming the land surface was subjected to a hypothesized instant temperature burst from ambient to ~2200oC at ~12.8 ka, what would be the expected effect on the resident sediment? To test the mid-LG (YDB) to YD relationship we analyzed the paleosols in both suites of deposits – mid-LG to – to test that the airburst grains are restricted to Late Allerød paleosols and using relative-age-determination criteria, that the overlapping YD to mid-LG moraines are closely related in time. These are some of the questions about the black mat that we seek to answer with reference to sites in the upper Guil and Po rivers of the Mt. Viso area.
Czasopismo
Rocznik
Strony
3--23
Opis fizyczny
Bibliogr. 74 poz., tab., rys.
Twórcy
  • Quaternary Surveys, 26 Thornhill Ave., Thornhill, Ontario, Canada, L4J1J4
  • Department of Geography, York University, 4700 Keele St., North York, Ontario, Canada, M3J1P3
autor
  • Geo-Science Consulting, 830 S. Dewey Rd., Dewey, Arizona, U.S., 86327
autor
  • Department of Geography, York University, 4700 Keele St., North York, Ontario, Canada, M3J1P3,
  • Department of Geological Sciences, University of Oregon, Eugene, Oregon, U.S. 97403-1272
autor
  • Department of Geology, Tartu University, Tartu, Estonia
autor
  • Université Grenoble Alpes, ISTerre-UMR 5275, F-38041 Grenoble, France
autor
  • MWM Consulting, 182 Gough Ave, Toronto, Ontario, Canada, M4K 3P1
  • Queens University Belfast, School of Biological Sciences, Belfast BT7 1NN, UK
Bibliografia
  • 1. Andersson, G., 1896. Svenska Växtvärldens Historia. P.A. Norstedt & Söner, Stockholm, 278 pp.
  • 2. Andronikov, A.V., Andronikova, I.E. Loehn, C.W., LaFuente, B., Ballengaer, J.A.M., Crawford, G.T., Lauretta, D.S., 2016a. Implications from chemical, structural and mineralogical studies from around the lower Younger Dryas Boundary (New Mexico, USA). Geografiska Annaler: Series A, Physical Geography 98, 39–59.
  • 3. Andronikov, A.V., Van Hoesel, A., Andronikova, I.E., Hoek, W.Z., 2016b. Trace element distribution and implications in sediments across the Allerod – Younger Dryas Boundary in the Netherlands and Belgium. Geografiska Annaler: Series A, Physical Geography 98, 325–345.
  • 4. Birkeland, P.W., 1999. Soils and Geomorphology. Oxford University Press, Oxford, UK, 430 pp.
  • 5. Blackwelder, E., 1927. Fire as an agent in rock weathering. Journal of Geology 35, 134–140.
  • 6. Boslough, M., 2012. Inconsistent impact hypotheses for the Younger Dryas. Proceedings of the National Academy of Sciences USA 109 (34), E2241, doi:10.1073/pnas.1206739109.
  • 7. Bougerd, F.C., De Vrind, J.M.P., 1987. Manganese oxidation by Leptothrix discophora. Journal of Bacteriology 169, 489–494.
  • 8. Broecker, W.S., Denton, G.H., Edwards, R.L., Cheng, H., Alley, R.B., Putnam, A.E., 2010. Putting the Younger Dryas cold event into context. Quaternary Science Reviews 29, 1078–1081.
  • 9. Bunch, T.E., Hermes, R.E., Moore, A.M.T., Kennett, D.J., Weaver, J.C., Wittke, J.H., DeCarli, P.S., 2012. Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proceedings of the National Academy of Sciences USA 109, E1903–E1912.
  • 10. Canada Soil Survey Committee (CSSC), 1998. The Canadian System of Soil Classification. 637 NRC Research Press, Ottawa, Canada (Publ. 1646), 187 pp.
  • 11. Cossart, E., Fort, M., Bourles, D., Carcaillet, J., Perrier, R., Siame, L., Braucher, R., 2010. Climatic significance of glacier retreat and rock glaciers re-assessed in the light of cosmogenic dating and weathering rind thickness in Clarée valley (Briançonnais, French Alps). Catena 80, 204–219.
  • 12. Day, P.E. 1965. Particle fractionation and particle size analysis. In: Black, C.A. (Ed.), Methods of soil analysis. American Society of Agronomy, Madison, WI, 545–567.
  • 13. Deer, W.A., Howie, R.A., Zussman, J., 1966. An introduction to the rock forming minerals. Longman, London, 340–355.
  • 14. De Laeter, J.R., Jeffery, P.M., 1965. The isotopic composition of terrestrial and meteoritic tin. Journal Geophysical Research 70 (12), 2895–2903.
  • 15. Dumont T., Schwartz S., Guillot S., Simon-Labric T., Tricart P., Jourdan S., 2012. Structural and sedimentary records of the Oligocene revolution in the Western Alps. Journal of Geodynamics 56–57, 18–38.
  • 16. Finsinger, W., Lane, C.S., van den Brand, G.J., Wagner-Cremer, F., Blockley, S.P.E., Lotter, A.F., 2011. The Lateglacial Quercus expansion in the southern European Alps: rapid vegetation response to a late Allerød warming. Journal of Quaternary Science 26, 694–702.
  • 17. Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., Belgya, T., Kennett, D.J., Erlandson, J.M., Dickenson, O.J., Goodyear, A.C., Harris, R.S., Howard, G.A., Kloosterman, J.B., Lechler, P., Mayewski, P.A., Montgomery, J., Poreda, R., Darrah, T., Que Hee, S.S., Smith, A.R., Stich, A., Topping, W., Wittke, J.H., Wolbach, W.S., 2007. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences USA 104, 16016–16021.
  • 18. Firestone, R.B., West, A., Revay, Z., Hagstrum, J.T., Belgya, T., Gue Hee, S.S., Smith, A.R., 2010. Analysis of the Younger Dryas impact layer. Journal of the Siberian Federal University, Engineering & Technologies 1 (3), 30–62.
  • 19. Frondel, C., 1962. Dana’s system of mineralogy (Vol. II). Silica minerals. Wiley, New York, 334 pp.
  • 20. Grapes, R. 2010., Pyrometamorphism. Springer, Berlin, 329 pp.
  • 21. Hartz, I., Milthers, V. 1901. Det senglacie ler i Allerød tegelværksgrav. Meddelelser Danks Geologisk Foreningen 8, 31–60.
  • 22. Haynes, C.V., Jr., Boerner, J., Domanik, K., Lauretta, D., Ballenger, J., Goreva, J., 2010. The Murray Springs Clovis site, Pleistocene extinction, and the question of extraterrestrial impact. Proceedings of the National Academy of Sciences USA 107 (9), 4010–4015.
  • 23. Hodgson, J.M., 1976. Soil Survey Field Handbook – Soil Survey Technical Monograph, No. 5. 773 Rothamsted Experimental Stn, Harpenden, Herts, 99 pp.
  • 24. Huebner, J.S., Turnock, A.C., 1980. The melting relations at 1 bar of pyroxenes composed largely of Ca-Mg- and Fe-bearing components. American Mineralogist 65, 225–271.
  • 25. Israde-Alcántara, I., Bischoff, J.L., Dominquez-Vazquez, G., Li, H.-C., DeCarli, P.S., Bunch, T.E., Wittke, J.H., Weaver, J.C., Firestone, R.B., West, A., Kennett, J.P., Mercer, C., Xie, S., Richman, E.K., Kinzie, C.R., Wolbach, W.S., 2012. Evidence from Central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences USA 109, E738–E747.
  • 26. Kennett, J.P., Becker, L., West, A., 2007. Triggering of the Younger Dryas Cooling by extraterrestrial impact. AGU Annual Meeting, 2007, PP41A-05.
  • 27. Kennett, D.J., Kennett, J.P., West, A., Mercer, C., Que Hee, S.S., Bement, L, Bunch, T.E., Sellers, M., Wolbach, W.S., 2009. Nanodiamonds in the Younger Dryas Boundary Sediment. Science 323 (5910), 94.
  • 28. Kennett, J.P., Kennett, D.J., Culleton, B.J., Tortosa, J.E.A., Bischoff, J.L., Bunch, T.E., Daniel, I.R., Erlandson, J.M., Ferraro, D., Firestone, R.B., Goodyear, A.C., Israde-Alcántara, I., Johnson, J.R., Jordá Pardo, J.F., Kimbel, D.R., LeCompte, M., Lopino, N.H., Mahaney, W.C., Moore, A.M.T., Moore, C.R., Ray, J.H., Stafford, T.W. Jr., Tankersley, K.B., Wittke, J.H., Wolbach, W.C., West, A., 2015. Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 Cal B.P. for Younger Dryas boundary on four continents, doi: 10.1073/pnas.1507146112.
  • 29. Lanari, P., Rolland, Y., Schwartz, S., Vidal, O., Guillot, S., Tricart, P., Dumont, T., 2014. P-T-t estimation of syn-kinematic strain in low-grade rocks (<300°C) using thermodynamic modelling and 40Ar/39Ar dating techniques: example of the Plan-de-Phasy shear zone (Briançonnais Zone, Western Alps). Terra Nova 26, 130–138.
  • 30. Lardeaux, J.M., Schwartz, S., Tricart, P., Paul, A., Guillot, S., Béthoux, N., Masson, F., 2006. A crustal-scale cross-section of the southwestern Alps combining geophysical and geological imagery. Terra Nova 18 (6), 412–422.
  • 31. LeCompte, M.A., Goodyear, A.C., Demitroff, M. N., Batchelor, D., Vogel, E.K., Mooney, C., Rock, B.N., Seidel, A.W., 2012. An independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas impact hypothesis. Proceedings of the National Academy of Sciences USA 106, doi: 10.1073/pnas.1208603109.
  • 32. Lemoine, M., Bas, T., Arnaud-Vanneau, A., Arnaud, H., Dumont, T., Gidon, M., Bourbon, M., de Graciansky, P.C., Rudkiewicz, J.L., Megard-Galli, J., Tricart, P., 1986. The continental margin of the Mesozoic Tethys in the Western Alps. Marine and Petroleum Geology 3, 179–199.
  • 33. Lowe, J.J., Rasmussen, S.O., Björck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C., Yu, Z.C., 2008. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews 27, 6–17.
  • 34. Mahaney, W.C., 1990. Ice on the Equator. Wm Caxton Ltd., Ellison Bay, Wisc, 386 pp.
  • 35. Mahaney, W.C., 1991. Later Pleistocene and Holocene glacial chronology at Chamonix and Argentière, French Alps, in Zeitschrift für Geomorphologie 35 (2), 225–237.
  • 36. Mahaney W.C., 2002. Atlas of sand grain surface textures and applications. Oxford University Press, Oxford, 237 pp.
  • 37. Mahaney, W.C., Keiser, L., 2013. Weathering rinds: unlikely host clasts for evidence of an impact-induced event. Geomorphology 184, 74–83.
  • 38. Mahaney, W. C., Milner, M.W., Sodhi, Rana, Dorn R. I., Boccia, S., Beukens, R.P., Tricart, P., Schwartz, S., Chamorro-Perrez, E., Barendregt, R.W., Kalm, V., Dirszowsky, R.W., 2007, Analysis of burnt schist outcrops in the Alps: relation to historical archaeology and Hannibal’s crossing. Geoarchaeology 22, 797–816.
  • 39. Mahaney, W.C., Milner, M.W., Kalm, V., Dirzowsky, R.W., Hancock, R.G.V., Beukens, R.P., 2008. Evidence for a Younger Dryas glacial advance in the Andes of northwestern Venezuela. Geomorphology 96, 199–211.
  • 40. Mahaney, W.C., Kapran, B., Milner, M.W., Kalm, V., Krinsley, D., Beukens, R., Boccia, S., Hancock, R.G.V., 2010. Evidence from the northwestern Venezuelan Andes for extraterrestrial impact: the black mat enigma. Geomorphology 116, 48–57.
  • 41. Mahaney, W.C., Krinsley, D., Langworthy, K., Hart, K., Kalm, V., Tricart, P., Schwartz, S., 2011a. Fired glaciofluvial sediment in the northwestern Andes: biotic aspects of the Black Mat. Sedimentary Geology 237 (1–2), 73–83.
  • 42. Mahaney, W.C., Krinsley, D., Dohm, J., Kalm, V., Langworthy, K., Ditto, J., 2011b. Notes on the black mat sediment, Mucuñuque catchment, northern Mérida Andes, Venezuela. Journal of Advanced Microscopy Research 6 (3), 177–185.
  • 43. Mahaney, W.C., Krinsley, D.H., Allen, C.C.R., 2013a. Biomineralization of weathered rock rinds: examples from the lower Afroalpine zone on Mount Kenya. Geomicrobiology Journal 30 (5), 411–421.
  • 44. Mahaney, W.C., Keiser, L., Krinsley, D.H., Pentlavalli, P., Allen, C.C.R., Somelar, P., Schwartz, S., Dohm, M.J., Dirzowsky, R., West, A., Julig, P., Costa, P., 2013b. Weathering rinds as mirror images of palaeosols: examples from the Western Alps with correlation to Antarctica and Mars. Journal of the Geological Society of London 170, 833–847.
  • 45. Mahaney, W.C., Keiser, L., Krinsley, D., Kalm, V., Beukens, R., West, A., 2013c. New Evidence from a Black Mat Site in the northern Andes supporting a cosmic impact 12,800 Years Ago. Journal of Geology 121 (6), 591–602.
  • 46. Mahaney, W.C., Somelar, P., Dirszowsky, R.W., Kelleher, B., Pentlavalli, P., McLaughlin, S., Kulakova, A.N., Jordan, S., Pulleyblank, C., West, A., Allen, C.C.R., 2016a. A microbial link to weathering of postglacial rocks and sediments, Mt. Viso area, Western Alps, demonstrated through analysis of a soil/paleosol bio/chronosequence. Journal of Geology 124, 149–169.
  • 47. Mahaney, W.C., Krinsley, D.H., Razink, J., Fischer, R., Langworthy, K., 2016b. Clast rind analysis using multi-high resolution instrumentation. Scanning 38, 202–212.
  • 48. Mahaney, W.C., Somelar, P., West, A., Krinsley, D., Allen, C.C.R., Pentlavalli, P., Young, J.M., Dohm, J.M., LeCompte, M., Kelleher, B.J.S., Pulleyblank, C., Dirszowsky, R., Costa, P., 2017. Evidence for cosmic airburst/impact in the Western Alps archived in Late Glacial Paleosols. Quaternary International 438 (B), 68–80.
  • 49. Mahaney, W.C., Krinsley, D., Milner, M.W., Fischer, R., Langworthy, K., in press. Did the Black Mat Impact/Airburst reach the Antarctic: Evidence from the New Mountain area near the Taylor Glacier in the Dry Valley Mountains. Journal of Geology.
  • 50. Meltzer, D.J., Holliday, V.T., Cannon, M.D., Miller, S.D., 2014. Chronological evidence fails to support claim of an isochronous widespread layer of cosmic impact indicators dated to 12,800 years ago, Proceedings of the National Academy of Sciences USA, doi: 10.1073/pnas.1401150111.
  • 51. National Soil Survey Center (NSSC), 1995. Soil Survey Laboratory Information Manual. Soil Survey Investigations Report No. 45. Version 1.00. USDA, Washington, D.C., 305 pp.
  • 52. Oyama, M., Takaehara, H., 1970. Standard Soil Color Charts. Japan Research Council for Agriculture and Fisheries.
  • 53. Petaev, M.I., Huang, S., Jacobsen, S.B., Zindler, A., 2013. Large Pt anomaly in the Greenland ice core points to a cataclysm at the onset of Younger Dryas. Proceedings of the National Academy of Sciences USA 110 (32), 12917–12920.
  • 54. Pigati, J.S., Latorre, C., Rech, J.A., Betancourt, J.L., Martinez, K.E., Budahn, J.R., 2012. Accumulation of “impact markers” in desert wetlands and implications for the Younger Dryas impact hypothesis. Proceedings of the National Academy of Sciences USA 109: 7208–7212.
  • 55. Pinter, N., Ishman, S.E., 2008. Impacts, mega-tsunami, and other extraordinary claims. GSA Today 18, 37–38.
  • 56. Quade, J., Forester, R.M., Pratt, W.L., Carter, C., 1998. Black mats, spring-fed streams, and Late Glacial Age recharge in the southern Great Basin. Quaternary Research 49, 129–148.
  • 57. Ralska-Jasiewiczowa, M., Stebich, M., Negendank, J.F.W., 2001. Correlation and synchronization of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quaternary Science Reviews 20, 1233–1249.
  • 58. Rudnick, R.L., Gao, S., 2005. Composition of the continental crust. In: Rudnick, R.L. (Ed.), The Crust: Treatise on Geochemistry. Elsevier, Amsterdam, 1–64.
  • 59. Schwartz, S., Lardeaux J.M., Guillot S., Tricart P., 2000. The diversity of eclogitic metamorphism in the Monviso ophiolitic complex, western Alps, Italy. Geodinamica Acta 13, 169–188.
  • 60. Schwartz, S., Guillot S., Reynard B., Lafay R., Debret B., Nicollet C., Lanari P., Auzende A.L., 2013. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 178, 197–210.
  • 61. Schwartz, S., Tricart, P., Lardeaux, J.M., Guillot, S., Vidal, O., 2009. Late tectonic and metamorphic evolution of the Piedmont accretionary wedge (Queyras Schistes lustrés, western Alps): Evidences for tilting during Alpine collision. Geological Society of America Bulletin 121 (3/4), 502–518.
  • 62. Stebbins, J. F., Du, L.-S., 2002. Chloride ion sites in silicate and aluminosilicate glasses: a preliminary study by 35Cl solid state NMR. American Mineralogist 87, 359–363.
  • 63. Stich, A., Howard, G., Kloosterman, J. B. Firestone, R.B., West, A., Kennett, J.P., Kennett, D.J., Bunch, T.E., Wolbach, W.S., 2008. Soot as evidence for widespread fires at the Younger Dryas onset (YDB; 12.9 ka). American Geophysical Union fall meeting, abstract PP13C-1471.
  • 64. Teller, J.T., Leverington, D.W., Mann, J.D., 2002. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews 21, 879–887.
  • 65. Thiagarajan, N., Subhas, A.V., Southon, J.R., Eiler, J.M., Adkins, J.F., 2014. Abrupt pre-Bølling-Allerød warming and circulation change in the deep ocean. Nature 511, 75–78.
  • 66. Tilsley, J.E., 1977. Placosols: another problem in exploratory geochemistry. Journal of Geochemical Exploration 7, 21–30.
  • 67. Tricart, P., Schwartz, S., 2006. A north-south section across the Queyras Schistes lustrés (Piedmont zone, Western Alps): syncollision refolding of a subduction wedge. Eclogae Geologicae Helvetia 99, 429–442.
  • 68. Tricart, P., Schwartz, S., Lardeaux, J.-M., Thouvenot, F., du Chaffaut, S.A., 2003, Aiguilles-Col Saint-Martin, Carte Géologique de la France, 1:50000.
  • 69. Tricart, P., 1984. From passive margin to continental collision: a tectonic scenario for the Western Alps. American Journal of Science 284, 97–120.
  • 70. Van der Hammen, T., Van Geel, B., 2008. Charcoal in soils of the Allerød- Younger Dryas transition were the result of natural fires and not necessarily the effect of an extra-terrestrial impact. Netherlands Journal of Geosciences 87, 359–361.
  • 71. Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37, 29–38.
  • 72. Wolbach, W.S., Ballard, J.P., Mayewski, P.A., Parnell, A.C., Cahill, N., Adedeji, V., Bunch, T.E., Domínguez-Vázquez, G., Erlandson, J.M., Firestone, R.B., French, T.A., Howard, G., Israde-Alcántara, I., Johnson, J.R., Kimbel, D., Kinzie, C.R., Kurbatov, A., Kletetschka, G., LeCompte, M.A., Mahaney, W.C., Melott, A.L., Mitra, S., Maiorana-Boutilier, A., Moore, C.R., Napier, W.M., Parlier, J., Tankersley, K.B., Thomas, B.C., Wittke, J.C., West, A., Kennett, J.P., 2018a. Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ~12,800 Years Ago. 1. Ice Cores and Glaciers. Journal of Geology126 (2), 165–184.
  • 73. Wolbach, W.S., Ballard, J.P., Mayewski, P.A., Parnell, A.C., Cahill,N., Adedeji, V., Bunch, T.E., Domínguez-Vázquez, G., Erlandson, J.M., Firestone, R.B., French, T.A., Howard, G., Israde-Alcántara, I., Johnson, J.R., Kimbel, D., Kinzie, C.R., Kurbatov, A., Kletetschka, G., LeCompte, M.A., Mahaney, W.C., Melott, A.L., Mitra, S., Maiorana-Boutilier, A., Moore, C.R., Napier, W.M., Parlier, J., Tankersley, K.B., Thomas, B.C., Wittke, J.C., West, A., Kennett, J.P., 2018b. Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ~12,800 Years Ago.2. Lake, Marine, and Terrestrial Sediments, Journal of Geology 126 (2), 185–205.
  • 74. Wittke, J.H., Weaver, J.C., Bunch, T.E., Kennett, J.P., Kennett, D.J., Moore, A.M.T., Hillman, G.C., Tankersley, K.B., Goodyear, A.C., Moore, C.R., Daniel, R., Jr., Ray, J.H., Lopinot, N.H., Ferraro, D., Israde-Alcántara, I., Bischoff, J.L., DeCarli, P.S., Hermes, R.E., Kloosterman, J.B., Revay, Z., Howard, G.A., Kimbel, D.R., Kletetschka, G., Nabelek, L., Lipo, C.P., Sakai, S., West, A., Firestone, R.B,. 2013. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 years ago. Proceedings the National Academy of Sciences USA, doi: 10.1073/ pnas.1301760110.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05cbdcb1-a9f4-4500-af8f-dea2d6e1aec7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.