PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pollution Load Capacity Assessment by Utilizing QUAL2E Modelling: A Case Study of Rambut River, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water quality modelling can be a way to determine the potential pollutant load capacity in the river water. As the number of population and intensity of activities around the river increased, it is possible that the water quality in the river will be negatively impacted. The Rambut river, which located in Pemalang and Tegal, Indonesia, has an important role as a water source in both areas. However, this demand is not accompanied by the availability of river capacity information yet. Five points from different segments along the upstream and downstream of Rambut River were assessed with the QUAL2E model. There were four different parameters in the research, e.g., BOD, fecal coliform, nitrite, and nitrate. The results showed that some segments did not comply with the minimum requirements by the local government. Additionally, the BOD and fecal coliform value were predicted to be increased in 2023 due to higher population number living near the river. The values for all parameters fluctuated between the different segments.
Słowa kluczowe
Rocznik
Strony
154--161
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Doctoral Program of Environmental Sciences, Indonesia Department of Environmental Engineering Diponegoro University, Indonesia
  • Department of Environmental Engineering, Diponegoro University, Indonesia
  • Doctoral Program of Environmental Sciences, Indonesia Department of Environmental Engineering Diponegoro University, Indonesia
  • Doctoral Program of Environmental Sciences, Indonesia Department of Environmental Engineering Diponegoro University, Indonesia
  • Department of Chemical Engineering, Diponegoro University, Indonesia
  • Department of Environmental Engineering, Diponegoro University, Indonesia
  • Department of Environmental Engineering, Diponegoro University, Indonesia
autor
  • Department of Environmental Engineering, Diponegoro University, Indonesia
  • Department of Environmental Engineering, Diponegoro University, Indonesia
  • Environmental Technology Chair Group, Wageningen University & Research, The Netherlands
autor
  • Department of Chemical Engineering, Diponegoro University, Indonesia
  • Department of Environmental Engineering, Diponegoro University, Indonesia
Bibliografia
  • 1. Adrian R.R., Ismail M.R., Herawati H. 2020. Spatial Distribution of Plankton in Citanduy River, Cisayong Region, Tasikmalaya, West Java. Asian Journal of Fisheries and Aquatic Research, 34–43.
  • 2. Amira S., Soesilo T.E.B., Moersidik S.S. 2021. BOD and DO Models of Krukut River, Jakarta. IOP Conference Series: Earth and Environmental Science, 716(1), 12021.
  • 3. Azzellino A., Salvetti R., Vismara R., Bonomo L. 2006. Combined use of the EPA-QUAL2E simulation model and factor analysis to assess the source apportionment of point and non point loads of nutrients to surface waters. Science of the Total Environment, 371(1–3), 214–222.
  • 4. BPS S.S.L.H. 2017. Statistik Lingkungan Hidup Indonesia. Jakarta: Badan Pusat Statistik.
  • 5. Dobbins W.E. 1964. BOD and oxygen relationships in streams. Journal of the Sanitary Engineering Division, 90(3), 53–78.
  • 6. Efiana A.A.F., Handayani D.S., Nugraha W.D. 2019. Penentuan status mutu dan strategi pengendalian pencemaran air sungai sebagai upaya pengelolaan kualitas lingkungan (Studi Kasus: Sungai Rambut, Kabupaten Pemalang-Tegal, Jawa Tengah). Universitas Diponegoro.
  • 7. Faradiba F., Handayani D.S., Dwi Nugraha W. 2019. Penentuan daya tampung beban pencemaran senyawa Nitrit dan Nitrat menggunakan permodelan QUAL2E Studi Kasus: Sungai Rambut, Kabupaten Pemalang–Tegal, Jawa Tengah. Universitas Diponegoro.
  • 8. Gomolka Z., Krutys P., Twarog B., Zeslawska E. 2020. A new approach to spatiotemporal estimation of the river state. Journal of Process Control, 94, 125–143. https://doi.org/https://doi.org/10.1016/j.jprocont.2020.08.008
  • 9. Honingh D., van Emmerik T., Uijttewaal W., Kardhana H., Hoes O., van de Giesen N. 2020. Urban River Water Level Increase Through Plastic Waste Accumulation at a Rack Structure. In Frontiers in Earth Science, 8, 28. https://www.frontiersin.org/article/10.3389/feart.2020.00028
  • 10. Hutchins M.G., Qu Y., Charlton M.B. 2021. Successful modelling of river dissolved oxygen dynamics requires knowledge of stream channel environments. Journal of Hydrology, 603, 126991. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126991
  • 11. Kido M., Yustiawati, Syawal M.S., Sulastri, Hosokawa T., Tanaka S., Saito T., Iwakuma T., Kurasaki M. 2008. Comparison of general water quality of rivers in Indonesia and Japan. Environmental Monitoring and Assessment, 156(1), 317. https://doi.org/10.1007/s10661-008-0487-z
  • 12. Krisanti M., Maknuun L.L.I., Anzani Y.M., Yuwono A.S., Widyastuti R., Wardiatno Y., Wulandari D. 2020. A comparative study on macroinvertebrates community in three rivers of Jawa Island, Indonesia. Aquaculture, Aquarium, Conservation & Legislation, 13(2), 570–581.
  • 13. Lima Neto I.E., Zhu D.Z., Rajaratnam N., Yu T., Spafford M., McEachern P. 2007. Dissolved oxygen downstream of an effluent outfall in an ice-covered river: Natural and artificial aeration. Journal of Environmental Engineering, 133(11), 1051–1060.
  • 14. Ling T.Y., Dana M.J., Bostam S., Nyanti L. 2012. Domestic wastewater quality and pollutant loadings from urban housing areas. Iranica Journal of Energy & Environment, 3(2), 129–133.
  • 15. Melching C.S., Yoon C.G. 1996. Key sources of uncertainty in QUAL2E model of Passaic River. Journal of Water Resources Planning and Management, 122(2), 105–113.
  • 16. Muin A., Nandiasa J.E. 2019. Annual flood analysis of Cisanggarung watershed in Cirebon regency. Neutron, 18(2), 42–50.
  • 17. Ning S.K., Chang N.B. 2007. Watershed-based point sources permitting strategy and dynamic permit-trading analysis. Journal of Environmental Management, 84(4), 427–446.
  • 18. Palmieri V., De Carvalho R.J. 2006. Qual2e model for the Corumbataí River. Ecological Modelling, 198(1–2), 269–275.
  • 19. Radwan M., Willems P., El‐Sadek A., Berlamont J. 2003. Modelling of dissolved oxygen and biochemical oxygen demand in river water using a detailed and a simplified model. International Journal of River Basin Management, 1(2), 97–103. https://doi.org/10.1080/15715124.2003.9635196
  • 20. Roosmini D., Septiono M.A., Putri N.E., Shabrina H.M., Salami I.R.S., Ariesyady H.D. 2018. River water pollution condition in upper part of Brantas River and Bengawan Solo River. IOP Conference Series: Earth and Environmental Science, 106(1), 12059.
  • 21. Sikder M., Tanaka S., Saito T., Hosokawa T., Gumiri S., Ardianor A., Uddin M., Tareq S., Shammi M., Kamal A.K., Kurasaki M. 2015. Vulnerability assessment of surface water quality with an innovative integrated multi-parameter water quality index (IMWQI). Pollution, 1(3), 333–346. https://doi.org/10.7508/pj.2015.03.010
  • 22. Son C.T., Giang N.T.H., Thao T.P., Nui N.H., Lam N.T., Cong V.H. 2020. Assessment of Cau River water quality assessment using a combination of water quality and pollution indices. Journal of Water Supply: Research and Technology-Aqua, 69(2), 160–172.
  • 23. Sugiarto T.W., Wulandari D.A., Atmojo P.S. 2020. Spatial Analysis of Erosion Danger Level at Rambut Watershed Area Tegal District. Journal of Development Research, 4(1), 7–11.
  • 24. Sulaeman D., Nurruhwati I., Hasan Z., Hamdani H. 2020. Spatial Distribution of Macrozoobenthos as Bioindicators of Organic Material Pollution in the Citanduy River, Cisayong, Tasikmalaya Region, West Java, Indonesia. Asian Journal of Fisheries and Aquatic Research, 32–42.
  • 25. Ullah Z., Khan H., Waseem A., Mahmood, Q., Farooq U. 2013. Water quality assessment of the River Kabul at Peshawar, Pakistan: industrial and urban wastewater impacts. Journal of Water Chemistry and Technology, 35(4), 170–176.
  • 26. Wang W., Yu Z., Wu Z., Song S., Song X., Yuan Y., Cao X. 2018. Rates of nitrification and nitrate assimilation in the Changjiang River estuary and adjacent waters based on the nitrogen isotope dilution method. Continental Shelf Research, 163, 35–43. https://doi.org/https://doi.org/10.1016/j.csr.2018.04.014
  • 27. West K., Van Woesik R. 2001. Spatial and temporal variance of river discharge on Okinawa (Japan): inferring the temporal impact on adjacent coral reefs. Marine Pollution Bulletin, 42(10), 864–872.
  • 28. Xia X., Liu T., Yang Z., Michalski G., Liu S., Jia Z., Zhang S. 2017. Enhanced nitrogen loss from rivers through coupled nitrification-denitrification caused by suspended sediment. Science of The Total Environment, 579, 47–59. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.10.181
  • 29. Yuceer M., Karadurmus E., Berber R. 2007. Simulation of river streams: Comparison of a new technique with QUAL2E. Mathematical and Computer Modelling, 46(1–2), 292–305.
  • 30. Zhang Y., Shi P., Li F., Wei A., Song J., Ma J. 2018. Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model. Chemosphere, 208, 493–501.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05ca9b6d-d2c7-4078-8c58-94d1cf37aa9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.