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INTRODUCTION

In mountainous areas, landslides occur on 
slopes under the influence of either direct grav-
ity or external factors such as earthquakes and 
rain (Manaouch et al., 2021). They manifest as 
mass movements of rocks, soil and debris. Be-
cause of its wide spread as one of the most dan-
gerous natural disasters, it has been studied by 
many researchers in different places: recently 
in Iran (Bahrami et al., 2020), in Kenya (Tan et 
al., 2020), in Serbia (Dokanovic, 2019), in India 
(Saha and Roy, 2019), in Malaysia (Lee and Prad-
ham, 2007), in Turkey (Akgun and Bulut, 2007), 
in Italy (Pellicani et al., 2014), in Austria (Zieher 
et al., 2016) and in many other areas. These di-
sasters have resulted in a large number of casu-
alties across the world (Flentje and Chowdhury, 
2016) and the loss of many properties, facilities, 
roads, forests and agricultural fields. Recently, an 

increase in the frequency of landslides has been 
observed and all the damage caused by them is 
often counted. Hence, the importance of studying 
landslides has increased, as it has become very 
important to know the areas prone to that in the 
future to reduce their damage as much as possible.

Similar to other landslide-threatened regions 
of the world, the Ziz upper catchment in SE Mo-
rocco suffers from landslides, but no attempt has 
been made to predict their locations or prevent 
their damage. During each rainy period, land-
slides can cause a large number of the traffic acci-
dents along the only national road N°13 between 
the cities of Midelt and Errachidia in south-east-
ern Morocco. As a result, traffic has been stopped 
on several occasions due to landslides and rocks 
along the road section between Errich and Er-
rachidia. Therefore, several efforts are needed to 
reduce the risk of landslides in this area. In this 
context, identifying the landslides prone-areas 
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using landslide susceptibility mapping (LSM) is 
proving to be a good tool to mitigate their risk of 
landslides. Despite the enormous damage caused 
by landslides in Morocco, literature reviews in-
dicate that only a few limited investigations have 
been conducted in the Rif, northern Morocco (El 
Kharim et al., 2021; Es-Smairi et al., 2021; Ben-
zougagh et al., 2020) and no previous studies on 
LSM in SE Morocco have been published yet. 
Filling this research gap is the reason why this 
work was performed.

Over the past three decades, many LSM 
methods have been proposed due to the availabil-
ity and cost of geospatial data and the enormous 
development of computer science. Most of these 
methods have been built on geographic informa-
tion systems (GIS). Generally, the LSM is done 
according to two approaches: the first is based 
on subjective judgments of experts (Qualitative) 
while the second is based on mathematically 
rigorous objective methodologies (Quantitative) 
(Zare et al., 2012).

In qualitative approaches, each factor influ-
encing the landslide is weighted based on expert 
judgments. Then, the derived weights are used to 
calculate the sensitivity to the landslide. Heuristic 
analysis, Inventory analysis and Analytical Hier-
archy Processing (AHP) are the most important 
qualitative LSM models. The quantitatively de-
veloped methods showed that the most widely 
used are frequency ratios (FR), logistic regres-
sions (LR), weights of evidence (Wof E), artificial 
neural networks (ANN) and support vector ma-
chines (SVM).Whereas, SHALSTAB, SINMAP 
and TRIGRS are the most important physically 
based LSM models, developed based on the inte-
gration of slope stability models and groundwater 
flow models to calculate the safety factor per each 
slope unit (Zhou et al., 2020).Looking at all these 
models, it was found through comparative studies 
that the optimal choice of one of the LSM meth-
ods depends largely on nature and availability of 
data in the study area.

Over the two past decades, a number of re-
searchers led by Pradhan, Lee and Pham and oth-
ers have increasingly improved machine learn-
ing (ML) algorithms for landslides susceptibility 
assessment. Examples are: Logistic regression 
(LR) (Lee and Pradhan, 2007), Frequency Ratio 
(FR) (Arabameri et al., 2019), Bayesian network 
(BN), Naïve Bayes (NB) (Lee et al., 2020, Pham 
et al. 2021), Weight of Evidence (WOE) (Pradhan 
et al., 2010),  Artificial neural networks (ANN) 

(Zare et al., 2013), SIGMA model (Abraham et 
al., 2021), ANFIS model (Moayedi et al., 2019; 
Zhou et al., 2018; Saha et al., 2020; Arabameri 
et al., 2020), Support Vector Regression (SVR) 
(Panahi et al., 2020; Balugon et al., 2021), Sup-
port Vector Machines (SVM) (Zhang et al., 2019; 
Saha et al., 2020), Decision Tree (DT) (Pham et 
al., 2020), Logistic Regression (LR), Random 
Forest (RF) (Saha et al., 2020; Nhu et al., 2020; 
Saha et al., 2021), Teaching-learning based op-
timization and Satin Bowerbird optimizer (TL-
BO-SBO) (Chen et al., 2021), Statistical Index 
and linear discriminant analysis (SI-LDA) (Ara-
bameri et al., 2020), radial basic function (RBF) 
(Zare et al., 2013; Pham et al., 2020), Artificial 
Intelligence (AI) (Dikshit et al., 2020), Condi-
tional probability and the boost regression tree 
(CP-BRT) (Saha et al., 2021), RSS (Pham et al., 
2021), SVM-ANN (Saha et al., 2020), SVM-LR 
(Saha et al., 2020), Convolutional neural network 
(CNN)-SVM, CNN-RF and CNN-LR (Saha et 
al., 2020), Convolutional neural network (CNN) 
(Ngo et al., 2020). All these methods and models 
were used to assess susceptibility to landslides in 
different regions of the world and were also used 
in the same areas to compare the results and de-
termine the most appropriate ones. These studies 
are very important for evaluating landslides and 
predicting future landslides.

In conjunction with these researches, many 
comparisons have been made between landslide 
susceptibility assessment models using different 
ML methods. For example, Saha et al. (Saha et 
al., 2020) stated a comparison research of indi-
vidual and ensemble of machine learning and 
probabilistic approaches like an artificial neu-
ral network (ANN), support vector machine 
(SVM), random forest (RF), logistic regres-
sion (LR), and their ensembles such as ANN-
RF, ANN-SVM, SVM-RF, SVM-LR, LR-RF, 
LR-ANN, ANN-LR-RF, ANN-RF-SVM, ANN-
SVM-LR, RF-SVM-LR, and ANN-RF-SVM-
LR for mapping landslide susceptibility in Gar-
hwal Himalaya, India and found that the ANN-
RF-LR ensemble has the best performances. In 
other studies, comparing the results of landslide 
assessment models and methods, it has been 
shown that one model can be successful in one 
area and vice versa in another.

Although there are several methods and 
models to assess the landslides susceptibility, 
some researchers suggest taking into account the 
scale of the study area. Thus, they concluded that 
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qualitative methods, such as spatial multicriteria 
evaluation (SMCE) and heuristic weighting, are 
the most popular existing LSM on a large-scales 
study (Waithaka et al., 2015).

Hence, the purpose of this study was to ac-
complish a susceptibility map to landslides for 
the large Ziz upper catchment (4435 km2). To 
do this, the fuzzy analytical hierarchy process 
(FAHP) method was adopted. The landslide in-
ventory and landslide responsible factors used in 
this work were collected from various sources. 
Highly landslide-prone areas in the Ziz upper wa-
tershed have been identified as a basis for further 
landslide hazards studies. In addition, the provid-
ed map can be used as a valuable tool for those 
interested in land planning and risk management.

MATERIALS AND METHODS

Study area

The mountainous area of southeastern Mo-
rocco represents a suitable area to study the risk 
of landslides, and the upper Ziz basin is one of the 
areas where they occur most. The basin covers an 
area of about 4,435 km2, and extends between 

longitudes 32° 05’ 48” and 32°64’19” North 
and latitudes 04° 11’ 72” and 05° 46’ 20” West 
(Figure 1). Altitude values are between 1023 and 
3687 m above sea level. The Ziz upper basin has 
a semi-arid climate, with harsh winters and mild 
summers, with a large temperature difference ac-
cording to altitude. Recorded annual rainfall rates 
fluctuate between 119 to 377 mm. yr-1 (Fenjiro et 
al., 2020). Average annual temperature values are 
between 19.2 °C and 10.2 °C. The basin soil pat-
terns are poorly developed mostly: eroded soils, 
alluvial soils or even raw minerals not yet devel-
oped. The Jurassic marl limestone layers are more 
prevalent in the basin (Hinaje, 1995; Sadki et al., 
1999; Charire, 1990) and the Plio-quaternaries 
continental fill formations (Figure 4e) (PNABV, 
2014). LULC in the basin are distributed as fol-
lows: rangelands, which are the most common; 
degraded forests limited to the Phoenician Ju-
niperus, Thurifera juniper, Atlas cedar, Aleppo 
pine, Holm oak and thorny xerophytes; agricul-
tural fields scattered on the banks of the water-
ways and finally the water bodies represented ex-
clusively by the dam reservoir (Mohamed et al., 
2020).These geo-environmental conditions have 
greatly contributed to making the region highly 
vulnerable to landslide.

Figure 1. Location of the study area and landslide inventory map (red circle)
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Data sources

In this paper, the DEM-SRTM with 30 m reso-
lution (Digital Elevation Model of the Shuttle Ra-
dar Topographic Mission) was used for extracting 
topographic data for aspect, slope and drainage 
network by ArcGIS 10.5. While the geological 
maps of the studied area were used to prepare the 
faults and lithological maps. As for the rainfall 
data, its averages were calculated from the data 
of four meteorological stations within the studied 
area. The LULC map was extracted after process-
ing the Landsat 8 Operational Land Imager (OLI) 
satellite data uploaded in March 2017 (Mohamed 
et al., 2020). Finally, the base maps of ArcGIS 
10.5 were used as a source for roadmap. Table 1 
provides more details on the data sources used in 
this research.

Landslide inventory map

The landslide inventory map is a critical ele-
ment in identifying areas of landslide occurrence 
(Pourghasimi et al., 2012). It is prepared based 
on different information and data such as old 
landslides, satellite images and then field survey 
(Figure 1). In this study, several field visits and 
Google Earth images enabled the identification 
of a total of 148 landslides. Then, the process of 
determining the relationship between the factors 
controlling the occurrence of a landslide and the 
weight of each factor is carried out based on the 
information provided by the inventory in the GIS 
environment (Yalcin et al., 2011). Furthermore, 
landslide inventory data are used to validate the 
LSM map resulting from FAHP modeling.

The fuzzy logic method

The values 0 and 1 were used in classical set 
theories, where 0 means that the element is not 

a member or does not belong to the set. Whereas 
a value of 1 means that an element is a mem-
ber of the set or belongs to it, and on this basis, 
there are two consequences: belonging or not 
to the set (Hines, 1997). But starting in 1965, 
Zadeh’s ‘fuzzy set’ theory came with a new 
content that the element can belong relatively 
to the set, meaning the value of belonging can 
be other than 0 and 1 as in the traditional the-
ories. Then Zadeh’s theory became one of the 
widely adopted methods in various disciplines 
and many researches. In geographical sciences, 
for example, fuzzy logic deals with spatial ob-
jects on the map as objects in a set. In the study 
of susceptibility to landslides for example, a 
fuzzy logical approach is used taking into ac-
count the pixel values of any influencing factor 
layer as a susceptibility object to landslides. In 
factor maps, pixels have values between 0 and 
1. A value of 0 means that the location is “un-
susceptible” or has no effect on susceptibility 
to landslide, while a value of 1 means that it 
is “very susceptible” or has a significant effect 
on susceptibility. According to fuzzy logic, in-
put raster maps are converted into maps with a 
scale of values between 0 and 1, each value has 
a certain membership in the set of susceptibility 
to landslides, based on several algorithms.

In this paper, to prepare the fuzzy map for 
each factor, the linear membership function 
(LMF) was used. Each parameter, according to 
its membership, is given a value between 0 and 
1 (Zadeh, 1965). If the value of “a parameter” 
x equals 0, it means that it is not an influential 
member of susceptibility to landslide and if the 
value of x equals 1, it means that it is a member 
with a full influence in that. The following equa-
tions provide more detail about the fuzzy logic set 
(McBratney and Odeh, 1997).
For each element x belonging to X:

Table 1. Data used and their sources
Used data Data format Period

Rainfalla Digital excel 1976 to 2019

Geological mapsb Digital vector 1939 & 1956

Landsat 8 OLIc Digital raster 2017

DEM – SRTMc Digital raster 2017

Base mapd Digital vector 2020

Google earth imagee Digital raster 2018

Note: aGuir-Ziz-Rhris hydrologic agency (ABH-GZR, 2019), bGeological map of Midelt high Atlas geological 
map (Gonzague et al., 1939) and high Atlas north Ksar essouk and Boudenib geological maps (Lyazidi et al., 
1956), cWebsite:www.earthexplorer.usgs.gov, dBBase maps online in ArcGIS 10.5, ewebsite and Google earth.
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where:	X – one of the factors and a, b is the mini-
mum and maximum values.

While the effect of stream distance, fault 
distance, and road distance on landslide suscep-
tibility was evaluated using the following LMF 
(Feizizadeh and Blaschke, 2013)
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where:	 x – representing the value of the dis-
tance from the river, the distance from 
the fault and the distance from the road;  
a, b – the cut-off values.

In this study, fuzzy raster map was prepared 
for each of the following LSM factors: fault dis-
tance, road distance, river distance, DEM, aspect, 
slope, lithology, precipitation and LULC.

Analytical hierarchy process

Analytical hierarchy process (AHP) is a meth-
od for Multi-Criteria Decision Making (MCDM), 
first introduced by Saaty in the 1980s. It is based 
on assigning weights to criteria using the pairwise 
comparison method for a factor or combination of 
factors. Each factor is weighted between 1 and 9 
according to its importance in influencing suscep-
tibility to landslides. Table 2 provides a descrip-
tion of the factor comparison method.

Pairwise comparisons of both qualitative 
and quantitative data were applied to produce 
a matrix (A):
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Nine geo-environmental factors were consid-
ered as affecting susceptibility to landslides:

DEM, rainfall, slope, lithology, aspect, prox-
imity to streams, proximity to roads and proxim-
ity to faults. According to Saaty’s scale and expert 
judgment, factor weights were evaluated with a 
number between 1 and 9 for each factor. These 
weights represent the relative importance of fac-
tors in their influence on susceptibility to land-
slides according to expert opinion.

RESULTS

Raster maps

The DEM-SRTM resolution of 30 m was ad-
opted for all other factor maps involved in the 
LSM determination of the Ziz upper watershed 
as they included aspect, lithology (erodibility), 
fault, slope, LULC, rivers, roads and precipitation 
maps shown in Figures 2a-i.

The Ziz basin’s average elevation is 1812 m 
(above sea level), and the values range between 
1023 m at the catchment outlet and 3687 m in 
the northwestern parts (Manaouch et al., 2021) 

Table 2. Scales for pairwise comparisons (Saaty, 1980)
Signifiance Definition

1 Equal importance

3 Moderate importance of one over another

5 Essential importance

7 Demonstrated importance

9 Absolute importance

2, 4, 6, 8 Intermediate values between the two 
adjacent judgments
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(Figure 2a). For slope, its values are between 
0.004 and 66.08 degrees and values from 0 to 15 
degrees represent 82%. As for aspect, the values 
range from -1 (flat) to 360 (N) with the northern 
and western sides being the rainiest and most 

Figure 2. Raster maps used for LSM in this study: (a) DEM, (b) rainfall, (c) slope, (d) aspect

sensitive to landslides. As for the precipitation 
map, it was developed based on datasets of four 
meteorological stations, most of which are lo-
cated in the watersheds, and the IDW interpola-
tion method (Inverse Distance Weighted) was 
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Figure 2. Raster maps used for LSM in this study: (e) lithology (sensitivity), (f) LULC, (g) streams, (h) fault

adopted to estimate the spatial distribution of 
precipitation, so the values were obtained for 
all points in the studied area. Average precipita-
tion values fluctuate between 120 and 470 mm. 
-1 year. The southern and eastern parts receive 

lower amounts compared to the rest of the 
parts. Whereas, the western and northwestern 
parts of the border receive significant amounts 
of rain (Figure 2b).The mountainous regions of 
the western and northwestern parts receive the 
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highest values (Figure 2a). Generally, five types 
of LULC predominate in the study area (Figure 
2f), the most important of which are rangeland 

or poorly vegetated areas, degraded forests, ag-
ricultural fields, water bodies and built-up ar-
eas. Regarding the influence of the lithological 
factor on the susceptibility of landslides, the 
soil erosion factor was used instead (Fenjiro 
et al., 2020). The lower the value of the soil 
erosion factor, the higher the susceptibility to 
landslides. Then, raster maps of road distance, 
fault distance, and stream distance (Figures 2g, 
2h, 2i) were prepared using the values shown 
in Table 3 by the Euclidean distance tool in the 
ArcGIS 10.5 spatial analysis toolbox. Finally, 
all these maps were combined and overlaid in 
ArcGIS 10.5 and a landslide susceptibility map 
was obtained.

Table 3. Values of distance to fault, distance to stream 
and distance to road approved for landslide susceptibility

Feature

Proximity to roads (m)

0–25 25–50 50–75 75–100 >100

Proximity to streams (m)

0–50 50–100 100–150 150–200 >200

Proximity to faults (m)

0–1000 1000–
2000

2000–
3000

3000–
4000 >4000Figure 2. Raster maps used for LSM 

in this study: (i) road raster map

Figure 3. Fuzzy map of studied area for each landslide susceptibility parameter: (a) DEM, (b) rainfall
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Fuzzy method

In ArcGIS 10.5, there are several ways to define 
fuzzy mapping of parameters. The linear method is 
the most widely used. According to Tables 3 and 4, 

a minimum and an upper bound for each parameter 
is adopted in order to implement the LMF to con-
vert parameter maps into maps with parameter val-
ues all between 0 and 1. For DEMs, values above 

Figure 3. Fuzzy map of studied area for each landslide susceptibility parameter: 
(c) slope, (d) aspect, (e) lithology (sensitivity), (f) LULC
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3000 m take the value 1 and smaller than 1000 m 
take the value 0. Thus, the elevation map has values 
ranging between 0 and 1 instead of between 1000 
and 3000 m. In the same way the values of all oth-
er parameters were converted to raster maps with 

values between 0 and 1. According to Figure 3,  
regions with a value of 1 in fuzzy maps prepared 
for parameters are considered to be more prone to 
landslides. Whereas, the regions with values closer 
to 0 are considered less susceptible.

Figure 3. Fuzzy map of studied area for each landslide susceptibility 
parameter: (g) streams, (h), fault, (i) road fuzzy map
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Table 4. Criteria values: maximum and minimum (Feizizadeh and Blaschke 2013)
Parameters Maximum Minimum

Rainfall (mm) >400 <100

LULC Degraded forest, rangeland Water bodies, agricultural fields

Distance to streams (m) <50 >200

Distance to faults (m) <1000 >4000

Distance to roads (m) <25 >100

DEM (m) >3000 <1200

Slope (°) >40 <10

Aspect South Flat

Lithology (Soil Erodibility factor) 0.05 0.16

Table 5. Pairwise comparison matrix, factor weights and consistency ratio
Parameter Lith Ra LULC Sl d to F d to S d to R Asp DEM Weight

Lith 1 2 3 4 5 6 7 8 9 0.31

Ra 0.5 1 2 3 4 5 6 7 8 0.22

LULC 0.33 0.5 1 2 3 4 5 6 7 0.15

Sl 0.25 0.33 0.5 1 2 3 4 5 6 0.11

d to F 0.2 0.25 0.33 0.5 1 2 3 4 5 0.08

d to S 0.16 0.2 0.25 0.33 0.5 1 2 3 4 0.05

d to R 0.14 0.16 0.2 0.25 0.33 0.5 1 2 3 0.04

Asp 0.12 0.14 0.16 0.2 0.25 0.33 0.5 1 2 0.03

DEM 0.11 0.12 0.14 0.16 0.2 0.25 0.33 0.5 1 0.02

Consistency Ratio (CR) = 0.02

Note: Lith – Lithology; Ra – rainfall; LULC – land use / land cover; Sl – slope; d to F – distance to faults;  
d to S – distance to streams; d to R – distance to roads; Asp – aspect; DEM – digital elevation model.

Figure 4. LSM based on the FAHP model
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According to Figures 2a-i, it is shown that 
all parameters are closer to the value 1 in the up-
stream western parts of the study area (Manaouch 
et al., 2021).

AHP results

By pairwise comparison of Feizizadeh and 
Blaschke (2013) shown in Table 5, it turns out 
that lithology and DEM have the most important 
and least weight, respectively. Where the lithol-
ogy got the highest weight 0.31 followed by the 
precipitation 0.22. The aspect weight was 0.03 
followed by the elevation 0.02.

FAHP results 

Integrating FAHP with GIS is a good tool for 
susceptibility mapping to landslides. After as-
signing weights to the parameters according to 
the AHP method, the parameter maps are con-
verted to fuzzy maps and using the Raster spatial 
analysis tool in ArcGIS 10.5 a landslide suscepti-
bility map is produced. According to the resulting 
map (Figure 4), it is found that the vulnerability is 
very high in the upper western and northern parts 
of the study area (Manaouch et al., 2021). These 
areas are dominated by mountain pastures. For 
the areas of medium susceptibility, they are found 

Figure 5. The area (%) for each class of the landslide susceptibility

Figure 6. Prediction rate curve for the LSM produced by FAHP model
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in abundance in the eastern, southern and central 
parts. While it is mainly spread in the northwest 
and some central areas, areas with weak or no 
susceptibility.

The natural break method is often used to di-
vide and classify the susceptibility map for land-
slides (Figure 4) (Pourghasemi et al., 2012). Fig-
ure 7 represents the results of dividing the result-
ing map into four domain regions which are very 
low, low, medium and high.

The categories of susceptibility to landslides 
are distributed according to Figure 7 and the graph 
of Figure 5, as follows: areas with high suscepti-
bility account for about 16.7%, areas with medium 
susceptibility accounting for about 36.1%, with 
low susceptibility representing about 25% and 
very weak susceptibility covering about 22.2%.

LSM’s accuracy

Several methods are used to calculate the ac-
curacy of the modeling results, but the method 
of calculating the area under the curve remains 
the most common. In this work, this method 
was used as well, where the classified map of 
the model was compared with the landslide 

inventory of the study area. In a classified FAHP 
model map, each pixel has a value that belongs 
to one of the landslide susceptibility classes and 
is either very low, low, medium, or high. By 
overlapping the classified map with the inven-
tory, the modeling success rate is determined. In 
other words, if the inventory of 148 landslides 
occurred in the area of high potential, this indi-
cates that the prediction rate is very good. The 
ArcSDM software package is used for this pur-
pose where the area under the curve (AUC) of 
the ROC curve is calculated and the AUC rep-
resents the accuracy of the model in predicting 
the occurrence of landslides (Chen et al., 2016). 
AUC values are usually between 0.5 and 1. The 
closer the values are to 1, the better the accuracy 
of the model. Whereas, values less than 0.5 rep-
resent poor accuracy or random predictions.

After calculating the AUC, the prediction ac-
curacy was about 0.885 in this study, which indi-
cates that the model succeeded in predicting the 
locations of landslides by 88.5%. These results, 
show that the FAHP model is a valuable tool for 
predicting landslide-prone areas in the case of Ziz 
upper watershed (Manaouch et al., 2021).

Figure 7. Classified landslide susceptibility map based on FAHP model
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DISCUSSION

From Figure 7, it was observed that 16.7% 
of the study area is classified as places with high 
sensitivity, while 47.2% have low and very low 
susceptibility. High and extremely high landslide 
susceptibility zones predominantly cover the ex-
treme western regions and some northern areas.

These results can be attributed to several 
reasons: altitude often exceeding 2000 m, large 
amounts of rain, steep slopes and faulted geologi-
cal formations. Low and very low landslide-prone 
areas are common in the south, southeast and cen-
tral regions except for the roadsides linking Err-
ich and Errachidia near the Ziz valley known for 
frequent landslides. The western parts upstream 
of Oued Ziz have experienced the majority of his-
torical landslides (Figure 1). This region is moun-
tainous and receives significant amount of pre-
cipitation each year. Therefore, it has the greatest 
coverage of very high and high susceptibility to 
landslide areas.

Recently several methods have been devel-
oped in LSM at different scales. Some research 
has shown that for large areas with low availabil-
ity of historical landslide inventories, the MCDA 
methods are suitable due to their significant ad-
vantages over statistical and physical methods 
(Glade et al., 2012 ; Barella et al., 2018; Zhou et 
al., 2020). For large areas, a review of previous 
studies has shown that AHP and Fuzzy-AHP are 
one of the best approaches for landslide suscepti-
bility mapping (Zhou et al., 2020).

In this study, the new methods for assessing 
landslide susceptibility that we mentioned earlier 
were not applied due to the limited number of his-
torical landslides in the inventory (148) and this 
may affect the validity of the results. Neverthe-
less, this number of historical landslide invento-
ries has been used to validate the FAHP results. 
To apply modern methods to compare their re-
sults with traditional methods, we are now in the 
stage of collecting a larger number of historical 
landslides in this large study area.

The validation results show that the used 
FAHP gave a promising accuracy with an AUC 
of 0.88 (Figure 6) and the resulting accuracy ap-
pears to be good compared to similar studies in 
different regions (Poughasemi et al., 2012 ; Shahri 
et al., 2019; Zhou et al., 2020). For this type of 
LSM accuracy control, the greater the number of 
historical landslides included in the “high” sus-
ceptibility areas of the resulting map, the higher 

the precision. In other words, the fewer historical 
landslides there are in “extremely low” areas, the 
better the accuracy of the results. It should also be 
noted that the number of landslides conditioning 
factors used in this study is 9, and in other stud-
ies we found that it ranges between 3 and 25. So, 
this may constitute another source of subjectivity 
involved in comparing the results of this study and 
other similar studies using MCDA methods. After 
reviewing several recent publications, it was found 
that the availability of data, the size and nature of 
the study area are responsible for the number se-
lection of LCFs (Reichenbach et al., 2018; Zhou 
et al., 2020). Even elsewhere, no specific universal 
rules have yet been proposed in the methods of 
landslide susceptibility studies. Hence, the solu-
tion adopted is to conduct several studies using 
different models and methods to select the best 
LSM maps for a particular study area. 

CONCLUSIONS

Landslides in mountainous areas are consid-
ered the most important geo-environmental haz-
ards. Predicting where they will occur is critical 
to preventing larger losses. With ease of access 
to remote sensing data and the geographic infor-
mation system revolution, landslide susceptibility 
studies have become much easier.

In this work, GIS techniques with the FAHP 
method were used to assess LSM in the large up-
per watershed of Ziz, south-eastern Morocco. To 
this end, a landslide inventory was prepared using 
148 landslide events. By analyzing the inventory 
data, it was found that lithology and precipitation 
are the two most influential factors in landslides 
susceptibility. While DEM and Aspect have less 
effect. After identifying the nine factors affecting 
susceptibility to landslides, they were evaluated 
and then weighted for use in modeling by com-
bining fuzzy logic and AHP method. Based on 
the susceptibility map to landslides of the FAHP 
model, it appears that 16.7% in the studied area 
has high susceptibility, 36.1% has medium sus-
ceptibility, 25% has low susceptibility, and finally 
22.2% has very low susceptibility. 

Looking at the results of the validation of 
LSM using ROC/AUC curves, it was found that 
the FAHP model applied in the upper Ziz water-
shed has a success rate of 88.5%. This means that 
this model can be used to predict where landslides 
will occur because the accuracy of its predictions 
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is really consistent with the inventory. Based on 
the FAHP modelling results, it appears that it 
represents a good tool for the decision maker to 
avoid the area’s most prone to landslides through 
appropriate preventative measurements.
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