Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Stainless steels are widely used for various automotive components. Some of them (e.g., parts of the exhaust system) are exposed to the external environment. In winter conditions, they are affected by chloride containing road salt solutions, which can lead to the local corrosion of these stainless steel parts. The presented paper is focused on the pitting corrosion resistance of two austenitic stainless steels (AISI 304 and AISI 316L) in 5 wt% and 10 wt% road salt solutions. The evaluation and comparison are based on the potentiodynamic polarization test method carried out at the temperature of 20 ± 2°C. The pitting potentials were determined from the polarization curves. Local corrosion damage of exposed surfaces caused by potentiodynamic polarization in the used solutions was observed by optical microscope. Experimental results confirmed a worse pitting corrosion resistance case, especially for AISI 304 stainless steel in 10 wt% road salt solution.
Rocznik
Tom
Strony
72--77
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering Univerzitná 1, 010 26 Žilina, Slovac Republic
autor
- University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering Univerzitná 1, 010 26 Žilina, Slovac Republic
autor
- University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering Univerzitná 1, 010 26 Žilina, Slovac Republic
Bibliografia
- 1. Ha, H.Y., Lee, T.H., Bae, J.H. & Won Chun, D. (2018) Molybdenum effects on pitting corrosion resistance of FeCrMnMoNC austenitic stainless steels. Metals 8, 653.
- 2. Helmenstine, A.M. (2020) The Chemical Composition of Road Salt. [Online]. Available from: https://www.yonghua reagents.com/The-Chemical-Composition-of-Road-Salt-id3010471.html [Accessed: April 25, 2022].
- 3. Ibrahim, M.A.M., Abd El Rehim, S.S. & Hamza, M.M. (2009) Corrosion behavior of some austenitic stainless steels in chloride environments. Materials Chemistry and Physics 115(1), pp. 80–85.
- 4. Jessen, C.Q. (2011) Stainless Steel and Corrosion. Denmark, Damhstal a/s.
- 5. Kadry, S. (2008) Corrosion analysis of stainless steel. European Journal of Scientific Research 22, pp. 508–516.
- 6. Kelly, V.R., Findlay, S.E.G., Schlesinger, W.H., Chatrchyan, A.M. & Menking, K. (2010) Road Salt: Moving Toward the Solution. The Cary Institute of Ecosystem Studies.
- 7. Kuchariková, L., Liptáková, T., Tillová, E., Kajánek, D. & Schmidová, E. (2018) Role of chemical composition in corrosion of aluminium alloys. Metals 8, 8, 581.
- 8. Lipinsky, T. (2019) Corrosion of the 1.4362 duplex stainless steel in a nitric acid environment at 333 K. Acta Physica Polonica A 135, 2, pp. 203–206.
- 9. liptáková, T. (2009) Bodová korózia nehrdzavejúcich ocelí (Pitting corrosion of stainless steels). EDIS – Žilinská Univerzita, Žilina.
- 10. Oravcová, M., Palček, P., Chalupová, M. & Uhríčik, M. (2018) Temperature dependent measurement of internal damping of austenitic stainless steels. MATEC Web of Conferences 157, 07008.
- 11. Oršulová, T., Palček, P., Roszak, M., Uhríčik, M. & Kúdelčík, J. (2018) Change of magnetic properties in austenitic stainless steels due to plastic deformation. Procedia Structural Integrity 13, pp. 1689–1694.
- 12. Park, J.O., Matsch, S. & Böhmi, H. (2002) Effects of temperature and chloride concentration on pit initiation and early pit growth of stainless steel. J. Electrochem. Soc. 149, 2, pp. B34–B39.
- 13. Rustandi, A., Ramadhan, B., Fadhil, A. & Setiawan, S. (2016) Corrosion behavior comparison of austenitic stainless steel 3041 and 3161 in aqueous sodium chloride solution by using electrochemical impedance spectroscopy. International Journal of Mechanical and Production Engineering 4, 12, pp. 70–74.
- 14. Santacreu, P., Glez, J., Roulet, N., Frohlich, H.T. & Grosbety, Y. (2006) Austenitic stainless steels for automotive structural parts. SAE Transactions 115, pp. 805–810.
- 15. Szewczyk-Nykiel, A. (2015) The influence of molybdenum on corrosion resistance of sintered austenitic stainless steels. Technical Transactions – Mechanics 4-M, pp. 131– 142.
- 16. Szklarska-Smialowska, Z. (2005) Pitting and Crevice Corrosion. Nace, Houston.
- 17. Štrbák, M., Kajánek, D., Knap, V., Florková, Z., Pastorková, J., Hadzima, B. & Goraus, M. (2022) Effect of plasma electrolytic oxidation on the short-term corrosion behaviour of AZ91 magnesium alloy in aggressive chloride environment. Coatings 12(5), 566.
- 18. Upadhyay, N., Ravi Shankar, A., Anandkumar, B., George, R.P., Pujar, M.G., Philip, J. & Amarendra, G. (2020) Effect of molybdenum on pit initiation rate and pit growth using electrochemical noise and its correlation with confocal laser scanning microscopic studies. JMEPEG 29, pp. 5337–5345.
- 19. Wiaderek, K.J. (2021) Effect of boronizing process of AISI 321 stainless steel surface on its corrosion resistance in acid environments (pH = 1). Manufacturing Technology 21, 5, pp. 714–719.
- 20. www.italinox.sk [Accessed: March 20, 2022].
- 21. Xie, Y., Guo, S., Leong, A., Zhang, J. & Zhu, Y. (2017) Corrosion behaviour of stainless steel exposed to highly concentrated chloride solutions. Corrosion Engineering, Science and Technology (The International Journal of Corrosion Processes and Corrosion Control), 52, 4.
- 22. Yi, Y., Cho, P., Al Zaabi, A., Addad, Y. & Jang, C. (2013) Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution. Corrosion Science 74, pp. 92–97.
- 23. Zatkalíková, V. & Markovičová, L. (2019) Influence of temperature on corrosion resistance of austenitic stainless steel in Cl– containing solutions. Production Engineering Archives 25, 25, pp. 43–46.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05bee62d-aff0-4c37-bbd2-aa4d47720d8c