PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Dynamic similarity criteria for simple cases of building and structure aerodynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Dynamiczne kryteria podobieństwa dla prostych przypadków aerodynamiki budynków i konstrukcji
Języki publikacji
EN
Abstrakty
EN
This work concerns the dynamic similarity criteria of various phenomena occurring in the aerodynamics of buildings and structures, originally derived from the ratios of forces and force moments affecting these phenomena. This paper is a continuation of [12], which addresses the foundations of dynamic similarity criteria formulated in this manner. At the end of [12], an authorial method and procedure for determining dynamic similarity criteria in fluid-solid interaction issues are presented. This method serves as the basis for the formulations and considerations of dynamic similarity criteria discussed further for various practical problems encountered in simple cases of building and structure aerodynamics, including self-exciting vibrations and wind-induced vibrations.
PL
Niniejsza praca dotyczy dynamicznych kryteriów podobieństwa różnych zjawisk występujących w aerodynamice budynków i konstrukcji, pierwotnie wyprowadzonych ze stosunków i momentów sił wpływających na te zjawiska. Niniejsza praca jest kontynuacją pracy [12], w której omówiono podstawy tak sformułowanych kryteriów podobieństwa dynamicznego. Na końcu pracy [12] przedstawiono autorską metodę i procedurę wyznaczania kryteriów podobieństwa dynamicznego w zagadnieniach interakcji płyn–ciało stałe. Metoda ta służy jako podstawa do formułowania i rozważania dynamicznych kryteriów podobieństwa omawianych dalej dla różnych praktycznych problemów napotykanych w prostych przypadkach aerodynamiki budynków i konstrukcji, w tym drgań samowzbudnych i drgań wywołanych wiatrem.
Rocznik
Strony
41--62
Opis fizyczny
Bibliogr. 32 poz., fig.
Twórcy
  • Wind Engineering Laboratory; Faculty of Civil Engineering; Cracow University of Technology
  • Wind Engineering Laboratory; Faculty of Civil Engineering; Cracow University of Technology
Bibliografia
  • [1] Basu R. I., “Aerodynamic forces on structures of circular cross-section. Part 2. The influence of turbulence and three-dimensional effects”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 24, (1986), 33-59. https://doi.org/10.1016/0167-6105(86)90071-1
  • [2] Blevins R. D., Flow-induced vibration. Second Edition, Van Nostrand Reinhold, New York 1990.
  • [3] Blevins R. D., Burton T. E., “Fluid forces induced by vortex shedding”, Journal of Fluid Engineering, vol. 95 (1976), 19-24. https://doi.org/10.1115/1.3448196
  • [4] Cook N. J., The designer’s guide to wind loading of building structures. Part I. Background damage, survey, wind data and structural classifications, Building Research Establishment, Butterworths, London 1985.
  • [5] Flaga A., “Quasi-steady theory in aerodynamics of slender structures”. Sonderforschungsbereich 151 – Tragwerksdynamik. Wissenschaftliche Mitteilungen, Berichte 25, Ruhr-Universität Bochum, 1994.
  • [6] Flaga A., “Quasi-steady models of wind load on slender structures, Part I. Case of a motionless structure”, Archives of Civil Engineering, vol. XL(1), 1994, 3-28.
  • [7] Flaga A., “Quasi-steady models of wind load on slender structures, Part II. Case of a moving structure”, Archives of Civil Engineering, vol. XL(1), 1994, 29-41.
  • [8] Flaga A., “Quasi-steady models of wind load on slender structures, Part III. Applications of quasi-steady theory in aerodynamics of slender structures”, Archives of Civil Engineering, vol. XLI(3), 1995, 343-376.
  • [9] Flaga A., Wind engineering. Fundamentals and applications, Arkady, Warszawa 2008 (in Polish).
  • [10] Flaga A., Wind vortex-induced excitation and vibration of slender structures – single structure of circular cross-section normal to flow. Fundamentals and applications, Monograph No.202, Cracow University of Technology, Cracow, 1996.
  • [11] Flaga A. “Nonlinear amplitude dependent self-limiting model of lock-in phenomenon at vortex excitation”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 69-71, (1997), pp. 331-340. https://doi.org/10.1016/S0167-6105(97)00166-9
  • [12] Flaga A., Kłaput R., Flaga Ł., “Dynamic similarity criteria in fluid-solid interaction at different fluid-solid relative motions: part I – fundamentals”, Archives of Civil and Mechanical Engineering, vol. 23, (2023), 28. https://doi.org/10.1007/s43452-022-00547-w
  • [13] Griffin O. M., Skop R. A., Koopman G. H., “The vortex-excited resonant vibrations of circular cylinders”, Journal of Sound and Vibration, vol. 31(2), (1973), pp. 235-249. https://doi.org/10.1016/S0022-460X(73)80377-3
  • [14] Griffin O. M., Ramberg S. E., “The vortex-street wakes of vibrating cylinders”, Journal of Fluid Mechanics, vol. 66(3), (1974), pp. 553-576. https://doi.org/10.1017/S002211207400036X
  • [15] Griffin O. M., “A universal Strouhal number for the locking-on of vortex shedding to the vibrations of bluff cylinders”, Journal of Fluid Mechanics, vol. 85(3), (1978), pp. 591-606. https://doi.org/10.1017/S0022112078000804
  • [16] Hartlen R. T., Currie I. G., “Lift-oscillator model of vortex-induced vibration”, Journal of the Engineering Mechanics Division, ASCE, vol. 96(EM5), (1970), pp. 577-591. https://doi.org/10.1061/JMCEA3.0001276
  • [17] Nakamura Y., Mizota Z., “Torsional flutter of rectangular prisms”, ASCE Journal of the Engineering Mechanics Division, vol. 101(2), (1975), pp. 125-142. https://doi.org/10.1061/JMCEA3.000200
  • [18] Nakamura Y., Tomonari Y., “Galloping of rectangular prisms in a smooth and in a turbulent flow”, Journal of Sound and Vibrations, vol. 52(2), (1977), pp. 233-241. https://doi.org/10.1016/0022-460X(77)90642-3
  • [19] Nowak M., “Aeroelastic galloping of prismatic bodies”. ASCE Journal of the Engineering Mechanics Division, vol. 96, (1969), 115-142. https://doi.org/10.1061/JMCEA3.000107
  • [20] Novak M., Tanaka H., “Effect of turbulence on galloping instability”, ASCE Journal of the Engineering Mechanics Division, vol. 100, (1974), pp. 27-47. https://doi.org/10.1061/JMCEA3.000186
  • [21] Parkinson G. V., Brooks N. P. H., “On the aeroelastic instability of bluff cylinders”, Journal of Applied Mechanics, vol. 28, (1961), pp. 252-258. https://doi.org/10.1115/1.3641663
  • [22] Ruscheweyh H., Dynamische Windwirkung an Bauwerken. Band 2: Praktische Anwendungen. Bauverlag, Wiesbaden und Berlin, 1982.
  • [23] Ruscheweyh H., “Practical experiments with wind-induced vibrations”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 33, (1990), pp. 211-218. https://doi.org/10.1016/0167-6105(90)90036-C
  • [24] Scanlan R. H., Jones N. P., Lorendeaux O., “Comparison of taut-strip and Section-model-based approaches in long-span bridge aerodynamics”, in International Conference on Wind Engineering, New Delhi, vol. 2, (1995), pp. 950-961.
  • [25] Scanlan R. H., Tomko J. J., “Airfoil and bridge deck flutter derivatives”, Journal of Engineering Mechanics Division, ASCE, vol. 97(EMG), (1971), pp. 1717-1737. https://doi.org/10.1061/JMCEA3.000152
  • [26] Simiu E., Scanlan R., Wind effects on structures. An introduction to wind engineering. Fundamentals and applications to the design, Third edition, John Wiley & Sons, New York, 1996.
  • [27] Simiu E., Miyata T., Design and buildings and bridges for wind, John Wiley & Sons, Inc., New Jersey, 2006.
  • [28] Tamura Y., Matsui G., “Wake-oscillator model of vortex-induced oscillation of circular cylinder”, in Proc. 5th International Conference Wind Engineering, Fort Collins, Colorado, USA 1979, Pergamon, Oxford 1980, pp. 1085-1094.
  • [29] Tamura Y., Amano A., “Mathematical model for vortex-induced oscillations of continuous systems with circular cross section”, Journal of Wind Engineering and Industrial Aerodynamics, 14, (1983), pp. 431-442. https://doi.org/10.1016/0167-6105(83)90044-2
  • [30] Vickery B. J., Basu R. I., “Across-wind vibrations of structures of circular cross-section. Part I. Development of a mathematical model for two-dimensional conditions”, Journal of Wind Engineering and Industrial Aerodynamics, 12(1), (1983), pp. 49-74. https://doi.org/10.1016/0167-6105(83)90080-6
  • [31] Vickery B. J., Basu R. I., “Across-wind vibrations of structures of circular cross-section. Part II. Development of a mathematical model for full-scale application”, Journal of Wind Engineering and Industrial Aerodynamics, 12(1), (1983), pp. 75-98. https://doi.org/10.1016/0167-6105(83)90081-8
  • [32] Vickery B. J., The response of chimneys and tower-like structures to wind loading. A state of the art in wind engineering, Wiley Eastern Limited, New Delhi, 1995, 205-233.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05bb852c-815a-4243-9e50-d4893d8681a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.