Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the most important sources of errors in digital fringe projection (DFP) systems is the nonlinearity in the response of the projector when it uses the three-step phase retrieval algorithm. Thus, it is necessary to increase the accuracy without affecting the efficiency. In this sense, the radiometric rectification methods are used. In this paper, an active radiometric rectification method for digital fringe projection is proposed. This proposal consists in two improvements of traditional active techniques: first, parallel intensity projection is used to obtain the projector response which requires only four dot patterns; and second, a method is provided for the calculation of the inverse polynomial that guarantees symmetry with respect to the response of the projector. Experimental results, in a digital fringe projection system, show that the root-mean-square phase error improves 6.3 times using this proposal.
Czasopismo
Rocznik
Tom
Strony
521--533
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
- CU-UAEM Valle de Chalco, Hermenegildo Galeana 3, Valle de Chalco, Estado de México 56615, México
autor
- CU-UAEM Valle de Chalco, Hermenegildo Galeana 3, Valle de Chalco, Estado de México 56615, México
autor
- CU-UAEM Valle de Chalco, Hermenegildo Galeana 3, Valle de Chalco, Estado de México 56615, México
autor
- CU-UAEM Valle de Chalco, Hermenegildo Galeana 3, Valle de Chalco, Estado de México 56615, México
Bibliografia
- [1] ZUO C., FENG S., HUANG L., TAO T., YIN W., CHEN Q., Phase shifting algorithms for fringe projection profilometry: A review, Optics and Lasers in Engineering 109(2), 2018, pp. 23–59, DOI: 10.1016/j.optlaseng.2018.04.019.
- [2] HUANG P.S., ZHANG C., CHIANG F.P., High-speed 3-D shape measurement based on digital fringe projection, Optical Engineering 42(1), 2003, pp. 163–168, DOI: 10.1117/1.1525272.
- [3] XIAO Y., CAO Y., WU Y., SHI S., Single orthogonal sinusoidal grating for gamma correction in digital projection phase measuring profilometry, Optical Engineering 52(5) 2013, article no. 053605, DOI: 10.1117/1.OE.52.5.053605.
- [4] ZHANG S., HUANG P.S., Phase error compensation for a 3-D shape measurement system based on the phase-shifting method, Optical Engineering 46(6), 2007, article no. 063601, DOI: 10.1117/1.2746814.
- [5] LIU K., WANG Y., LAU D.L., HAO Q., HASSEBROOK L.G., Gamma model and its analysis for phase measuring profilometry, Journal of the Optical Society of America A 27(3), 2010, pp. 553–562, DOI: 10.1364/JOSAA.27.000553.
- [6] ZHANG X., ZHU L., LI Y., TU D., Generic nonsinusoidal fringe model and gamma calibration in phase measuring profilometry, Journal of the Optical Society of America A 29(6), 2012, pp. 1047–1058, DOI: 10.1364/JOSAA.29.001047.
- [7] LI B., WANG Y., DAI J., LOHRY W., ZHANG S., Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques, Optics and Lasers in Engineering 54, 2014, pp. 236–246, DOI: 10.1016/j.optlaseng.2013.07.010.
- [8] XING S., GUO H., Correction of projector nonlinearity in multi-frequency phase-shifting fringe projection profilometry, Optics Express 26(13), 2018, pp. 16277–16291, DOI: 10.1364/OE.26.016277.
- [9] LÜ F., XING S., GUO H., Self-correction of projector nonlinearity in phase-shifting fringe projection profilometry, Applied Optics 56(25), 2017, pp. 7204–7216, DOI: 10.1364/AO.56.007204.
- [10] ZHANG S., Comparative study on passive and active projector nonlinear gamma calibration, Applied Optics 54(13), 2015, pp. 3834–3841, DOI: 10.1364/AO.54.003834.
- [11] SHAHPASKI M., RICARDO SAPAICO L., CHEVASSUS G., SUSSTRUNK S., Simultaneous geometric and radiometric calibration of a projector-camera pair, [In] 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017, pp. 3596–3604, DOI: 10.1109/CVPR.2017.383.
- [12] GHIGLIA D.C., PRITT M.D., Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software, Wiley-Interscience, Chapter 1. pp. 1–30.
- [13] LU J., MO R., SUN H., CHANG Z., Flexible calibration of phase-to-height conversion in fringe projection profilometry, Applied Optics 55(23), 2016, pp. 6381–6388, DOI: 10.1364/AO.55.006381.
- [14] OTSU N., A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics 9(1), 1979, pp. 62–66, DOI: 10.1109/TSMC.1979.4310076.
- [15] ZHAO H., LIANG X., DIAO X., JIANG H., Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector, Optics and Lasers in Engineering 54, 2014, pp. 170–174, DOI: 10.1016/j.optlaseng.2013.08.002.
- [16] JIANG C., BELL T., ZHANG S., High dynamic range real-time 3D shape measurement, Optics Express 24(7), 2016, pp. 7337–7346, DOI: 10.1364/OE.24.007337.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05b86c34-7603-4d7c-b23f-530c67ffc375