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One of the most important sources of errors in digital fringe projection (DFP) systems is the
nonlinearity in the response of the projector when it uses the three-step phase retrieval algorithm.
Thus, it is necessary to increase the accuracy without affecting the efficiency. In this sense, the ra-
diometric rectification methods are used. In this paper, an active radiometric rectification method
for digital fringe projection is proposed. This proposal consists in two improvements of traditional
active techniques: first, parallel intensity projection is used to obtain the projector response which
requires only four dot patterns; and second, a method is provided for the calculation of the inverse
polynomial that guarantees symmetry with respect to the response of the projector. Experimental
results, in a digital fringe projection system, show that the root-mean-square phase error improves
6.3 times using this proposal.
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1. Introduction

The digital fringe projection (DFP) techniques have been widely used in areas such as
entertainment, reverse engineering, and quality control, among others [1]. Commonly,
this technique is based on the projection of sinusoidal fringe patterns using a digital
projector and recorded with a digital camera. In this sense, the DFP techniques are af-
fected by the nonlinearity of the input-to-output intensities of the projector whose goal
is to enhance visual effects.

Several compensation methods have been proposed to eliminate such nonlinearity
that can be grouped into two categories: active and passive methods. In the former, the
sinusoidal fringe patterns are modified before their projection in such a way that the
nonlinearity of the projector is cancelled [2]. In passive methods, the recorded fringe
patterns are analyzed after their projection [3—8]. Active methods are faster than pas-
sive methods; they do not require any post-processing [9], however, it is assumed that
the input-to-output response of the projector is previously known.
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In practice, the projector response is obtained by projecting and recording uniform
gray scale images with intensities from 0 to 255 onto a white dashboard. By analyzing
a small window of each recorded image, the average of the intensities is taken as the
output intensity. The previous process is time consuming and need to be performed if
the projector and camera configuration are modified. Some authors have attempted
to speed up the projector response acquisition by assuming an exponential model of
the input-to-output response [10, 11]. Nevertheless, most common projector responses
cannot be fitted using an exponential model.

In this research paper, we propose a method to speed up the projector response ac-
quisition applied to an active compensation. This proposal is based on the projection
of simultaneous dots with increasing gray level intensities. Four dot patterns containing
64 intensities each are projected to obtain several output intensities simultaneously.
Latter, the obtained input-to-output response is used for an active compensation meth-
od in a DFP system. In addition, we propose a method for the calculation of the inverse
polynomial. Experimental validation shows that the proposed method can obtain ac-
curate projector responses compared to the traditional method.

The organization of this article is as follows: Section 2 discusses the principles of
the DFP technique and the nonlinear response problem; Section 3 explains the pro-
posed method for obtaining the input-to-output projector response and its application
for an active compensation method; Section 4 presents the experimental validation,
and Section 5 gives the conclusions.

2. Material and methods
2.1. The three-step phase retrieval algorithm

In phase shifting techniques, a sequence of discrete sinusoidal fringe patterns is pro-
jected over an object and the reflected intensities are imaged with a digital camera.
The digitally generated fringe patterns are given by

LG, j) = a[l + cos(2mj/p + 5,()} +b (1)

where a is the amplitude intensity, p is the fringe pitch, J; is a known shift and b is
the bias.
The recorded intensity images are described as

By = 1'G,J) + 17, fyeos| g (i) + 0, @

where I'(i, j) is the average intensity, /"'(i, j) is the intensity modulation, ¢ (i, j) is the
phase to be determined, and J,, is the introduced shift.

The equation system given in Eq. (2) has three unknowns /', /" and ¢, which can
be solved by a least squares approach for £ > 3. For high-speed three-dimensional (3D)
imaging, it is desirable to use the minimum number of fringe patterns. A particular solu-



Simultaneous intensity projection for projector response computation... 523

tion for the three unknowns can be found when the measurements are taken at equally
spaced intervals in a complete period. For instance, for k = 3 let 6, = —2n/3, J, = 0 and
03 = 2m/3, then the phase can be retrieved by

o) = tan 2D 3)
20, -1, -1
The retrieved phase given in Eq. (3) is known as the wrapped phase whose values
range between —x and © with a modulus of 27t. The process of removing the 27 discon-
tinuities from the wrapped phase is called phase unwrapping [12]. Thus, the unwrapped
phase together with the calibration data of the camera-projector system are used to ob-
tain the 3D information through a phase-to-height method [13].

2.2. Active radiometric calibration

An active radiometric calibration method consists of pre-distort the sinusoidal fringe
patterns before their projection, so as to compensate for the nonlinearity of the projec-
tor. HUANG et al. [2] and ZHANG [10] propose to model the projector response using
a seventh order polynomial as

=y 1)k 4
OED YRS @
where /; is the input intensity, f(/;) is the output intensity, and ay, ..., a; are constants
to be calibrated.

By determining the inverse polynomial £ ~! it is possible to obtain the distorted
fringe patterns as / ,icnv = £ 71(I,). Thus, if the distorted patterns / ,icnv are projected, then
the nonlinearity of the projector will be compensated.

For instance, Fig. 1(a) shows the ideal response, the actual projector response, the
fitted polynomial model and its inverse polynomial model. Note that the initial and
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Fig. 1. Response of the projector (a). Ideal sinusoidal pattern and inverse sinusoidal pattern (b).
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Fig. 2. Unwrapped retrieved phase using a three-step algorithm for ideal, distorted and inverse sinusoidal
fringe patterns.

final intensity ranges were omitted in the projector response because the camera does
not distinguish them. Figure 1(b) shows the ideal sinusoidal pattern as given in Eq. (1),
the distorted sinusoidal pattern according to the polynomial model given in Eq. (4) and
the pre-distorted sinusoidal pattern according to the corresponding inverse polynomial
model. When the former inverse sinusoidal patterns are projected, the nonlinearity of
the projector is canceled and thus almost ideal sinusoidal patterns is obtained. Finally,
Fig. 2 shows the unwrapped retrieved phase using the three-step algorithm for ideal,
distorted and inverse polynomial model. As can be seen, the nonlinearity of the pro-
jector affects severely the retrieved phase and thus introduces error in DFP systems.

3. Experimental method

This proposal for an active radiometric calibration method consists of two main steps.
First, a strategy to speed up the computation of the camera-projector response by pro-
jecting in parallel several gray levels into four groups with increasing intensities is ap-
plied, and second, an improved computation of the inverse polynomial model is used
and the error between the fitted polynomial model and the obtained inverse model is
measured.

3.1. Parallel gray-levels projection

Commonly, the input-to-output response of a digital projector is obtained by projecting
uniform gray-level images ranging from 0 to 255 over a white board and then taking
the average intensity of a small window on the captured images. In other words, the
response curve consist of a set of pairs {/; 4, [, ,} fork=0, ..., 255 where {/; ;} is the
input gray scale to the projector and {/; ,} is the average intensity over the small win-
dow of the k-th captured image. This response curve of the camera-projector system
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depends on the nonlinearities of the camera and projector, the angle of projection, and
also on the local slope and the reflectivity of the measured object. Here, it is assumed
that the configuration of the camera-projector and the measured object is static, and
that the response of the camera is linear.

The above process is time-consuming and needs to be performed whenever the pro-
jector colour configuration changes. To speed up the acquisition of the input-to-output
response, multiple regions are illuminated at the same time with continuous gray levels.
Four dot patterns were designed with 64 continuous gray-levels each to cover the full
range of 0 to 255. Each dot pattern contains 64 circles arranged as a lattice at the same
distance from each other and with increasing intensity per row. It is assumed that each
circle in the dot pattern affects a small and localized region of the scene from the point
of view of the camera. The distance between the circles is such that the illuminated
regions of each circle do not overlap with their neighbors.

Figure 3 shows a dot pattern with gray-level intensities from 192 to 255. The full
range of 28 intensities was divided into four groups for two reasons: (1) to optimize
the radius of the circles and the distance between them, and (2) to use the dot pattern
with highest intensities for circles segmentation using global image thresholding by
the method of OTsu [14]. To obtain the input-to-output response of the projector, first
a correspondence was established between the projected circles and the segmented cir-
cles. Second, a histogram is constructed using the pixel intensities of each segmented
circle, then it is averaged with the intensities of the highest frequency.

To cope with the influence of neighboring projected circles whose contributing in-
tensities modify the true response curve the local regression smoothing to the projector
response with parallel projection is used. This method allows to reduce the intensity
variations introduced by projecting multiple gray-level intensities. The local regres-
sion smoothing helps to discard outlier intensities, large intensity variations in the ob-
tained response curve, and overfitting. The MATLAB built-in smooth function within
robust loss was used. Section 4 shows an example of the projector response obtained
by parallel projection.

Fig. 3. Example of a dot pattern with intensities from 192 to 255.
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3.2. Inverse polynomial computation

An important task in an active radiometric calibration method is the computation of
the inverse polynomial. This problem cannot be solved for polynomials of degree
greater than five. ZHANG [10] proposes to exchange the coordinates /; and /,, of the ac-
tual response of the projector and then to fit a seventh order polynomial to the new
data. However, this method does not guarantee that the fitted polynomial to the inverse
data is symmetric with respect to the actual projector response.

Here, a variant of method of Zhang is proposed: (1) fit the seventh order polynomial
to the actual projector response; (2) sample the polynomial on the range of interest;
(3) exchange the coordinates of the sampled data and fit a second seventh order poly-
nomial to the new data as follows:

full) = 3

This second polynomial given in Eq. (5) is used to generate the inverse sinusoidal
fringe patterns as /)" = f;  (I,(/)) for some k € {1,2,3} and j = 1, ..., m. To verify
the accuracy of the generated inverse patterns, it defines the RMS error as

b (1,)* (5)
0

m : invg - 2
o S D - ra o] o

error
m

Thus, if the inverse fringe patterns were generated accurately, the error /. < ¢ for
some positive threshold value . In practice, the value ¢ is not zero due to numerical

inconsistencies in the computation of the inverse polynomial.

3.3. Proposed active radiometric calibration method

At this point, the proposed active radiometric calibration method can be summarized
in the following steps:

1) Project and capture the intensities of the four groups of dots patterns as shown
in Fig. 3, each one with sequential gray-levels from the intervals [0, 63], [64, 127],
[128, 191], and [192, 255].

2) Obtain the projector response by parallel intensity projection as explained in
Section 3.1.

3) Fit a seventh order polynomial on the data obtained in the previous step and
determine its inverse polynomial as explained in Section 3.2.

4) Generate sinusoidal fringe patterns using inverse polynomial computed in the
previous step.

5) Project the inverse sinusoidal fringe patterns (using the three-step phase retriev-
al algorithm) generated in the previous step and obtain the phase as given in Eq. (3).

In step 1), the full range of intensities from [0, 255] was splitted into four intervals,
namely, [0, 63], [64, 127],[128, 191] and [192, 255]. For each interval [a, b], it is gen-
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erated a dot pattern as shown in Fig. 3 with increasing intensities from a to b. The num-
ber of intervals and dots per pattern was chosen by experimentation such that minimize
the number of projections. In step 2), the captured images are analyzed in order to detect
each dot and its intensity, and thus obtain the response curve of the projector. In step 3),
a seventh order polynomial to the obtained response curve of previous step is fitted,
and the inverse polynomial is computed by interchanging the coordinates correspond-
ing to the desired intensity and its captured intensity. Finally, in steps 4) and 5), the
rectified fringe patterns are generated using the inverse polynomial, and then used to
reconstruct the scene by fringe projection.
In Section 4 the proposed method to a DFP system for 3D imaging is applied.

4. Experiments and discussion

In this section, the experimental results obtained using the proposed active radiometric
calibration method are shown. The infrastructure used in this research was the following:
LG PW1000 DLP projector with a resolution of 1280 x 800 pixels; Canon EOS 1000D
digital camera in RAW capture mode. The computational processing was performed
on a laptop computer with an Intel Core i17-8750H CPU at 2.2 GHz, 16 GB of RAM,
and the MATLAB software.

In Fig. 4(a) the projector configuration and the construction of the sinusoidal fringe
patterns used to validation can be seen. It shows the projector response using parallel
intensity projection and the fitted fourth order polynomial. A robust local regression
with a span of 10% on the obtained projector response to alleviate the intensity vari-
ation was used. The dot patterns were generated using a radius of 20 pixels per circle
with a distance of 98 pixels between them. The inverse sinusoidal fringe pattern can
be seen in Fig. 4(b) together with the ideal and distorted patterns with a fringe pitch
of 32 pixels.
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Fig. 4. Results using parallel projection: response curve and the fitted polynomial (a). Generated ideal,
distorted and inverse sinusoidal fringe patterns (b). Square difference between ideal and modified inverse
sinusoidal patterns (c).
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Fig. 4. Continued.

Notice that the intensities of the inverse and distorted sinusoidal patterns must
be between the range of interest of the fitted polynomial. To ensure that this happens,
we chose the amplitude a = [ f(max([;)) — f;,,(min(Z;))]/2 and the bias value b=
= fray(min(Zy).

In Fig. 4(c), we can see the intensity square difference between the ideal ; and
modified inverse f(/;"") patterns where f is the fitted polynomial. The resultant RMS
error defined in Eq. (6) was I . = 0.00768 pixels. The error / . allows to measure
the accuracy of the generated inverted fringe patterns, which may vary from thus ob-
tained by the traditional method using the response curve shown in Fig. 1(a).

A comparison of the output intensity /, obtained by projecting ideal and inverted
fringe patterns on a flat surface is shown. The output intensity of ideal and inverted
patterns can be seen in Fig. 5(a) and (b), respectively. The patterns were generated us-
ing a dynamic range between [93, 221] with parameters a = 64 and b = 93.

| ||||||| |

Fig. 5. Output intensity for ideal fringe patterns (a). Output intensity for inverted fringe patterns (b). Cross
-section of the two patterns (c).
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Fig. 5. Continued.

Figure 5(c) shows the horizontal cross-section marked in Fig. 5(a) for the two in-
tensity patterns. Notice that the output intensity of the ideal patterns is out of dynamic
range and the output intensity of the inverted patterns is within the established dynamic
range.

4.1. Validation

The proposed method is validated by implementing a DFP system in two scenarios:
a flat surface and an irregular object surface. The DFP system consists of the three-steps
phase retrieval algorithm as shown in Section 2.1. Figure 6 shows the absolute phase
of the flat surface obtained by projecting inverse patterns with the proposed method.

The 3D reconstruction of the flat surface with and without active radiometric cor-
rection can be seen in Fig. 7(a) and (b), respectively. The former shows that the waving

Fig. 6. 3D reconstruction results: absolute phase of the flat surface.
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Fig. 7. Comparison of a 3D reconstruction of a flat surface: (a) without using radiometric correction, and
(b) using the proposed active radiometric correction.
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Fig. 8. Phase error comparison with and without radiometric correction; black dashed curve is the phase
error without correction and red solid line is the phase error with correction.

structure of the surface is reduced drastically using our method in comparison to sur-
face shown in Fig. 7(b) obtained without radiometric correction.

In addition, Fig. 8 shows the phase error through the red horizontal line, as shown
in Fig. 6. Here, the phase error corresponds to the difference between a given phase
line and an ideal phase line obtained through a 17-steps phase retrieval algorithm.
The RMS error phase of the DFP system with and without radiometric correction were
0.0514 and 0.3276 rad, respectively. The proposed active radiometric method gives
an improvement by factor of 6.3735 with a standard deviation of 0.0214 rad.

Figure 9(a) shows the results of the DFP system for the irregular surface in a picture
of a white toy with a projected sinusoidal fringe pattern. Figure 9(b) shows a compar-
ison of the absolute unwrapped phase for the horizontal red line marked in Fig. 9(a).
As can be seen in Fig. 9(b), the phase without correction has a higher error compared



Simultaneous intensity projection for projector response computation... 531

(b)

Phase ¢ (rad)
o

e Without correction RN
-6 | |~ With correction
— — —ldeal ™

50 100 150 200
X

Fig. 9. 3D reconstruction results: a picture of an irregular surface (a). Comparison of the absolute un-
wrapped phases for the horizontal red line (b).
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Fig. 10. 3D surface using the proposed method (a). 3D surface without radiometric correction (b).

with the ideal and corrected phases. Here, the ideal phase was obtained using a 17-steps
phase retrieval algorithm. Figures 10(a), and (b) show the 3D surface with and without
radiometric correction. In this scenario, the waving structure of the 3D surface reduces
significantly with respect to the result without radiometric correction.

In the Table, we show a comparison of several methods for correcting the nonlinearity
of the projector in DFP systems. To compare the different approaches, it shows the best
phase error obtained under similar experimental conditions and scenarios. The phase
error reported in [3] and [6] were 0.0651 and 0.0349 rad, respectively, both obtained
by using an exponential model in order to determine the gamma parameter of the pro-
jector. In [4], a lookup table is constructed to store the phase error and used to com-
pensate the obtained phase. The previous approach does not require obtaining the
response curve of the projector, instead of that it projects sinusoidal fringe patterns us-
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Table. Comparison of different methods for correcting the nonlinearity of the projector.

Author Method Phase error [rad]
Xiao et al. [3] Gamma model 0.0651

ZHANG and HUANG [4] Phase compensation 0.01

ZHANG et al. [6] Gamma model 0.0349

XING and Guo [8] Harmonic analysis 0.0181

ZHANG [10] Active correction 0.025

Our method Active correction 0.0514

ing the three RGB color channels. A similar approach is reported in [8] in which a har-
monic analysis is performed to compensate the phase. The phase error of methods [4]
and [8] were 0.01 and 0.0181 rad, respectively. On the other hand, in [10], an active
radiometric calibration method is used whose phase error was 0.025 rad and can be
compared to the proposed method in this research which is 0.0514 rad. As can be seen,
the accuracy of our method is near to the average phase error that is 0.03062 rad of
the state of the art approaches presented in the Table.

4.2. Final remarks

An important limitation of active radiometric calibration methods is that the dynamic
range is reduced. The latter is because the camera cannot distinguish the initial and
final intensity intervals. In addition, to ensure that the intensity of inverse fringe pat-
terns is within the established dynamic range, it is necessary to further reduce the dy-
namic range. Some authors have tried to extend the dynamic range by changing the
camera exposure [15] and by generating inverse and regular fringe patterns depending
on the saturated imaged patterns [16]. Thus, it is of interest to study the relationship
between the nonlinearity of the project and high dynamic range (HDR) techniques.

Although the parallel intensity projection speeds up the exhaustive projection of gray
levels, it has some restrictions that have to be taken into account: (1) it requires a large
whiteboard to project the dot patterns, and (2) the distance between the dots should be
as large as possible to avoid overlapping the illuminated areas. Other kinds of patterns
can be designed in order to alleviate these restrictions, for instance, by generating col-
ours pattern [11].

5. Conclusions

An active radiometric calibration method has been proposed whose accuracy is similar
to the state of the art techniques. A parallel intensity projection was used to obtain the
projector response using only four dot patterns which speed up exhaustive projection
of 256 gray-levels. Also, a method to compute the inverse polynomial used to generate
the inverse sinusoidal fringe patterns was proposed. This last method allows us to
ensure that the inverse polynomial is symmetric with respect to the fitted polynomial
on the approximated projector response. Finally, it is validated that the proposal can
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improve the RMS phase error by 6.3735 times in a DFP system without radiometric
calibration.
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