PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparative study of transverse shrinkage stresses and residual stresses in P91 welded pipe including plasticity error

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the measurement of the residual stresses in P91 welded pipe using the blind hole drilling technique. The P91 pipe weld joints were prepared using gas tungsten arc welding process. The residual stress measurement was carried out using the strain gauge rosette that was associated with the plastic deformation of material and stress concentration effect of multi-point cutting tool. Strain gauge response was estimated experimentally using the tensile testing for the uniaxial loading while finite element analysis was performed for biaxial loading. Gas tungsten arc welds joint was prepared for conventional V-groove and narrow groove design. The corrective formulation was developed for calculating the corrected value of residual stresses from the experimentally obtained strain value. The corrected and experimental induced residual stresses values as per ASTM E837-13 were calculated for both V-groove and narrow groove design. Post weld heat treatment (PWHT) of P91 welded pipe was also conducted to study their effect on residual stresses.
Rocznik
Strony
1000--1011
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667, India
  • School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Odisha 751013, India
autor
  • Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667, India
Bibliografia
  • [1] J. Hald, Microstructure and long-term creep properties of 9– 12% Cr steels, Int. J. Pressure Vessels Piping 85 (2008) 30–37. http://dx.doi.org/10.1016/j.ijpvp.2007.06.010.
  • [2] C. Pandey, M.M. Mahapatra, Evolution of phases during tempering of P91 steel at 760 8C for varying tempering time and their effect on microstructure and mechanical properties, Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 231 (2017), http://dx.doi.org/10.1177/0954408916656678.
  • [3] C. Pandey, N. Saini, M.M. Mahapatra, P. Kumar, Hydrogen induced cold cracking of creep resistant ferritic P91 steel for different diffusible hydrogen levels in deposited metal, Int. J. Hydrogen Energy 41 (2016) 17695–17712. http://dx.doi.org/ 10.1016/j.ijhydene.2016.07.202.
  • [4] C. Pandey, A. Giri, M.M. Mahapatra, P. Kumar, Characterization of microstructure of HAZs in as-welded and service condition of P91 pipe weldments, Met. Mater. Int. 23 (2017) 148–162., http://dx.doi.org/10.1007/s12540-017-6394-5.
  • [5] S.H. Babu, G. Amarendra, R. Rajaraman, C.S. Sundar, Microstructural characterization of ferritic/martensitic steels by positron annihilation spectroscopy, J. Phys.: Conf. Ser. (ICPA-16) 443 (2013) 1–6. http://dx.doi.org/10.1088/1742- 6596/443/1/012010.
  • [6] B. Silwal, L. Li, A. Deceuster, B. Griffiths, Effect of postweld heat treatment on the toughness of heat-affected zone for Grade 91 steel, Weld. Res. 92 (2013) 80s–87s.
  • [7] S. Paddea, J.A. Francis, A.M. Paradowska, P.J. Bouchard, I.A. Shibli, Residual stress distributions in a P91 steel-pipe girth weld before and after post weld heat treatment, Mater. Sci. Eng. A 534 (2012) 663–672. http://dx.doi.org/10.1016/j. msea.2011.12.024.
  • [8] C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Diffusible hydrogen level in deposited metal and their effect on tensile properties and flexural strength of P91 steel, J. Eng. Mater. Technol. 139 (2017) 1–11. http://dx.doi.org/10.1115/1.4035764.
  • [9] C. Pandey, A. Giri, M.M. Mahapatra, On the prediction of effect of direction of welding on bead geometry and residual deformation of double-sided fillet welds, Int. J. Steel Struct. 16 (2016) 333–345. http://dx.doi.org/10.1007/s13296-016-6007-z.
  • [10] C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Some studies on P91 steel and their weldments, J. Alloys Compd. 743 (2018) 332–364.
  • [11] R. Cottam, V. Luzin, K. Thorogood, Y.C. Wong, M. Brandt, The role of metallurgical solid state phase transformations on the formation of residual stress in laser cladding and heating, Mater. Sci. Forum 777 (2014) 19–24. http://dx.doi.org/10.4028/ www.scientific.net/MSF.777.19.
  • [12] A. De, T. Debroy, A perspective on residual stresses in welding, Sci. Technol. Weld. Join. 16 (2017) 204–208. http:// dx.doi.org/10.1179/136217111X12978476537783.
  • [13] A.H. Yaghi, T.H. Hyde, A.A. Becker, W. Sun, Finite element simulation of welding and residual stresses in a P91 steel pipe incorporating solid-state phase transformation and post-weld heat treatment, IMechE: J. Strain Anal. 43 (2008) 275–293. http://dx.doi.org/10.1243/03093247JSA372.
  • [14] P.K. Ghosh, R.R. Kumar, K. Devakumaran, Effect of pulse current on shrinkage stress and distortion in multi pass GMA welds of different groove sizes, Indian Weld. J. 43-s (2010) 14–23.
  • [15] D. Deng, H. Murakawa, W. Liang, Numerical and experimental investigations on welding residual stress in multi-pass butt-welded austenitic stainless steel pipe, Comput. Mater. Sci. 42 (2008) 234–244. http://dx.doi.org/ 10.1016/j.commatsci.2007.07.009.
  • [16] P. Dong, Residual stress analyses of a multi-pass girth weld: 3-D special shell versus axisymmetric models, J. Pressure Vessel Technol. 123 (2001) 207–213. http://dx.doi.org/10.1115/ 1.1359527.
  • [17] P.K. Ghosh, R.R. Kumar, A.K. Pramanick, Effect of pulse current on shrinkage stress and distortion in multi pass GMA welds of different groove sizes, Ind. Weld. J. Weld. J. 43-s (2010) 14–24.
  • [18] R. Anant, P.K. Ghosh, Experimental investigation on transverse shrinkage stress and distortion of extra narrow and conventional gap dissimilar butt joint of austenitic stainless steel to low alloy steel, in: Proceedings of the International Conference on Mining, Material and Metallurgical Engineering, 2014, 1–5.
  • [19] A.H. Yaghi, T.H. Hyde, A.A. Becker, W. Sun, G. Hilson, S. Simandjuntak, P.E.J. Flewitt, D.J. Smith, A comparison between measured and modeled residual stresses in a circumferentially butt-welded P91 steel pipe, J. Pressure Vessel Technol. 132 (2010) 1–10. http://dx.doi.org/10.1115/ 1.4000347.
  • [20] K.A. Venkata, S. Kumar, H.C. Dey, D.J. Smith, P.J. Bouchard, Study on the effect of post weld heat treatment parameters on the relaxation of welding residual stresses in electron beam welded P91 steel plates, Proc. Eng. 86 (2014) 223–233. http://dx.doi.org/10.1016/j.proeng.2014.11.032.
  • [21] S. Kim, J. Kim, W. Lee, Numerical prediction and neutron diffraction measurement of the residual stresses for a modified 9Cr–1Mo steel weld, J. Mater. Process. Technol. 209 (2009) 3905–3913. http://dx.doi.org/10.1016/j.jmatprotec.2008. 09.012.
  • [22] Y. Sattari-Far, I. Javadi, Influence of welding sequence on welding distortions in pipes, Int. J. Pressure Vessels Piping 85 (2008) 265–274. http://dx.doi.org/10.1016/j.ijpvp.2007.07.003.
  • [23] E. Procter, E.M. Beaney, Recent developments in center – hole technique for residual-stress measurement, Exp. Tech. 6 (1982) 10–15.
  • [24] W.E. Nickola, Practical subsurface residual stress evaluation by the hole-drilling method, in: Proceedings of the Fifth International Congress on Experimental Mechanics, 1986, 126–136.
  • [25] H. Zhou, M.D. Rao, On the error analysis of residual stress measurements by the hole drilling method, J. Strain Anal. 28 (1993) 273–276.
  • [26] Y.C. Lin, C.P. Chou, Error induced by local yielding around hole in hole drilling method for measuring residual stress of materials, Mater. Sci Technol. 11 (1995) 600–604.
  • [27] J. Gibmeier, J.P. Nobre, B. Scholtes, Residual stress determination by the hole drilling method in the case of highly stressed surface layers, Mater. Sci. Res. Int. 10 (2004) 21–25.
  • [28] D. Vangi, S. Tellini, Hole-drilling strain-gauge method: residual stress measurement with plasticity effects, J. Eng. Mater. Technol. 132 (2010) 1–7. http://dx.doi.org/10.1115/ 1.3184030.
  • [29] R. Moharami, I. Sattari-Far, Experimental and numerical study of measuring high welding residual stresses by using the blind-hole-drilling technique, J. Strain Anal Eng. Design 43 (2008) 141–148. http://dx.doi.org/10.1243/03093247JSA378.
  • [30] C. Pandey, H.K. Narang, N. Saini, M.M. Mahapatra, P. Kumar, Microstructure and transverse shrinkage stress analysis in GTA welds of P91 steel pipe, Int. J. Steel Struct. 17 (2017) 763– 774. http://dx.doi.org/10.1007/s13296-017-6030-8.
  • [31] C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Homogenization of P91 weldments using varying normalizing and tempering treatment, Mater. Sci. Eng. A (2017), http://dx.doi.org/10.1016/j.msea.2017.10.086.
  • [32] K. Maruyama, K. Sawada, J. Koike, Strengthening mechanisms of creep resistant tempered martensitic steel, ISIJ Int. 41 (2001) 641–653. http://dx.doi.org/10.2355/ isijinternational.41.641.
  • [33] C. Pandey, M. Mahapatra, Evolution of phases during tempering of P91 steel at 760 for varying tempering time and their effect on microstructure and mechanical properties, Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 664 (2016) 58–74. http://dx.doi.org/10.1177/0954408916656678.
  • [34] C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Comparative study of autogenous tungsten inert gas welding and tungsten arc welding with filler wire for dissimilar P91 and P92 steel weld joint, Mater. Sci. Eng. A 712 (2018) 720–737. http://dx.doi. org/10.1016/j.msea.2017.12.039.
  • [35] N. Saini, C. Pandey, M.M. Mahapatra, R.S. Mulik, On study of effect of varying tempering temperature and notch geometry on fracture surface morphology of P911 (9Cr–1Mo–1W–V–Nb) steel, Eng. Fail. Anal. 85 (2018) 104–115. http://dx.doi.org/ 10.1016/j.engfailanal.2017.12.013.
  • [36] C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Effect of normalization and tempering on microstructure and mechanical properties of V-groove and narrow-groove P91 pipe weldments, Mater. Sci. Eng. A 685 (2017) 39–49. http://dx. doi.org/10.1016/j.msea.2016.12.079.
  • [37] ASTM E837-13a, Standard Test Method for Determining Residual Stresses by the Hole Drilling Strain Gage Method, ASTM International, West Conshohocken, PA, 2013, http://dx. doi.org/10.1520/E0837-13A.2.
  • [38] TN-503, Measurement of Residual Stresses by the Hole Drilling Strain Gauage Method, Vishay Precision Group, 2010, pp. 19–33.
  • [39] C. Pandey, M.M. Mahapatara, P. Kumar, N. Saini, Dissimilar joining of CSEF steels using autogenous tungsten-inert gas welding and gas tungsten arc welding and their effect on d-ferrite evolution and mechanical properties, J. Manufact. Process. 31 (2018) 247–259. http://dx.doi.org/10.1016/j. jmapro.2017.11.020.
  • [40] C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, J.G. Thakre, R. S. Vidyarthy, H.K. Narang, A brief study on d-ferrite evolution in dissimilar P91 and P92 steel joint and their effect on mechanical properties, Arch. Civ. Mech. Eng. 18 (2018) 713– 722. http://dx.doi.org/10.1016/j.acme.2017.12.002.
  • [41] D.J. Kotecki, Hydrogen reconsidered, Weld. J. 71 (1992) 35–43.
  • [42] American Welding Society, AWS D10.10/D10.10M-1999. Recommended Practices for Local Heating of Welds in Piping and Tubing, 1999.
  • [43] C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Some studies on P91 steel and their weldments, J. Alloys Comp. (2018), http://dx.doi.org/10.1016/j.jallcom.2018.01.120.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05b4ca26-20d9-4c36-8de5-9eca4e03dbff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.