PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigation on the transition of fluid flow characteristics through a rotating curved duct

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Time-dependent flow investigation through rotating curved ducts is utilized immensely in rotating machinery and metal industry. In the ongoing exploration, time-dependent solutions with flow transition through a rotating curved square duct of curvature ratio 0.009 have been performed. Numerical calculations are carried out for constant pressure gradient force, the Dean number Dn = 1000 and the Grashof number Gr = 100 over a wide range of the Taylor number values […] for both positive and negative rotation of the duct. The software Code:Blocks has been employed as the second programming tool to obtain numerical solutions. First, time evolution calculations of the unsteady solutions have been performed for positive rotation. To clearly understand the characteristics of regular and irregular oscillations, phase spaces of the time evolution results have been enumerated. Then the calculations have been further attempted for negative rotation and it is found that the unsteady flow shows different flow instabilities if Tr is increased or decreased in the positive or in the negative direction. Two types of flow velocities such as axial flow and secondary flow and temperature profiles have been exposed, and it is found that there appear two- to four-vortex asymmetric solutions for the oscillating flows for both positive and negative rotation whereas only two-vortex for the steady-state solution for positive rotation but four-vortex for negative rotation. From the axial flow pattern, it is observed that two high-velocity regions have been created for the oscillating flows. As a consequence of the change of flow velocity with respect to time, the fluid flow is mixed up in a great deal which enhances heat transfer in the fluid.
Rocznik
Strony
45--63
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
  • Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj-8100, BANGLADESH
  • Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj-8100, BANGLADESH
  • Department of Mathematics and Statistics, Bangladesh University of Business and Technology Dhaka-1216 BANGLADESH
  • Department of Mathematics, Jagannath University Dhaka-1100, BANGLADESH
  • Department of Engineering and Architecture, University of Parma Parma 43124, ITALY
Bibliografia
  • [1] Mondal R.N., Kaga Y., Hyakutake T. and Yanase S. (2007): Bifurcation diagram for two-dimensional steady flow and unsteady solutions in a curved square duct.− Fluid Dynamics Research, vol.39, No.5. pp.413-446. https://doi.org/10.1016/j.fluiddyn.2006.10.001.
  • [2] Rumsey C.L., Gatski T.B. and Morrison J.H. (2010): Turbulence model predictions of strongly curved flow in a Uduct.− AIAA Journal, vol.38, No.8, pp.1394-1402. https://doi.org/10.2514/2.1115.
  • [3] Valizadeh K., Farahbakhsh S., Bateni A., Zargarian A., Davarpanah A., Alizadeh A. and Zarei M. (2019): A parametric study to simulate the non-Newtonian turbulent flow in spiral tubes.− Energy Science and Engineering, vol.8, pp.134-149. https://doi.org/10.1002/ese3.514.
  • [4] Chandratilleke T.T., Nadim N. and Narayanaswamy R. (2012): Vortex structure-based analysis of laminar flow behaviour and thermal characteristics in curved ducts. − International Journal of Thermal Sciences, vol.59, pp.75-86. https://doi.org/10.1016/j.ijthermalsci.2012.04.014.
  • [5] Chandratilleke T.T., Nadim N. and Narayanaswamy R. (2013): Analysis of secondary flow instability and forced convection in fluid flow through rectangular and elliptical curved ducts. −Heat Transfer Engineering, vol.34, No.14, pp.1237-1248. https://doi.org/10.1080/01457632.2013.777249.
  • [6] Yanase S. and Nishiyama K. (1988): On the bifurcation of laminar flows through a curved rectangular tube. − Journal of Physical Society of Japan, vol.57, No.11, pp.3790-3795. https://doi.org/10.1143/JPSJ.57.3790.
  • [7] Zhang J., Chen H., Zhouc B. and Wang X. (2019): Flow around an array of four equispaced square cylinders. − Applied Ocean Research, vol.89, pp.237-250. https://doi.org/10.1016/j.apor.2019.05.019.
  • [8] Nazeer G., Islam S., Shigri S.H. and Saeed S. (2019): Numerical investigation of different flow regimes for multiple staggered rows. − AIP Advances, vol.9 (035247). https://doi.org/10.1063/1.5091668.
  • [9] Krishna C.V., Gundiah N. and Arakeri J.H. (2017): Separations and secondary structures due to unsteady flow in a curved pipe. −Journal of Fluid Mechanics,vol.815, pp.26-59. https://doi.org/10.1017/jfm.2017.7.
  • [10] Hashemi A., Fischer P.F. and Loth F. (2018): Direct numerical simulation of transitional flow in a finite length curved pipe. − Journal of Turbulence, vol.19, No.8, pp.664-682. https://doi.org/10.1080/14685248.2018.1497293.
  • [11] Mondal R.N., Islam M.S., Uddin K. and Hossain M.A. (2013): Effects of aspect ratio on unsteady solutions through curved duct flow. − Applied Mathematics and Mechanics, vol.34, No.9, pp.1107-1122. https://doi.org/10.1007/s10483-013-1731-8.
  • [12] Islam M.N., Ray S.C., Hasan M.S. and Mondal R.N. (2019): Pressure-driven flow instability with convective heat transfer through a rotating curved rectangular duct with differentially heated top and bottom walls. −AIP Conference Proceedings, vol.2121 (030011). https://doi.org/10.1063/1.5115856.
  • [13] Hasan M.S., Mondal R.N., Kouchi T. and Yanase S. (2019): Hydrodynamic instability with convective heat transfer through a curved channel with strong rotational speed. − AIP Conference Proceedings, vol.2121 (030006). https://doi.org/10.1063/1.5115851.
  • [14] Zhang W., Wei Y., Dou H.S. and Zhu Z. (2018): Transient behaviors of mixed convection in a square enclosure with an inner impulsively rotating circular cylinder. − International Communications in Heat and Mass Transfer, vol.98, pp.143-154. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.016.
  • [15] Islam M.Z., Mondal R.N., Rashidi M.M. (2017): Dean-Taylor flow with convective heat transfer through a coiled duct. − Computers and Fluids, vol.149, pp.141-155. https://doi.org/10.1016/j.compfluid.2017.03.001.
  • [16] Hasan M.S., Mondal R.N. and Lorenzini G. (2019): Numerical prediction of non-isothermal flow with convective heat transfer through a rotating curved square channel with bottom wall heating and cooling from the ceiling. −International Journal of Heat and Technology, vol.37, No.3, pp.710-726. https://doi.org/10.18280/ijht.370307.
  • [17] Hasan M.S., Mondal R.N. and Lorenzini G. (2019): Centrifugal instability with convective heat transfer through a tightly coiled square duct. − Mathematical Modelling of Engineering Problems, vol.6, No.3, pp.397-408. https://doi.org/10.18280/mmep.060311.
  • [18] Hasan M.S., Islam M. M., Ray S.C. and Mondal R.N. (2019): Bifurcation structure and unsteady solutions through a curved square duct with bottom wall heating and cooling from the ceiling. − AIP Conference Proceedings, vol.2121 (050003). https://doi.org/10.1063/1.5115890.
  • [19] Mondal R.N., Ray S.C. and Yanase S. (2014): Combined effects of centrifugal and Coriolis instability of the flow through a rotating curved duct with rectangular cross section. − Open Journal of Fluid Dynamics, vol.4, pp.1-14. https://doi.org/10.4236/ojfd.2014.41001.
  • [20] Arpino F., Cortellessa G. and Mauro A. (2015): Transient Thermal Analysis of Natural Convection in Porous and Partially Porous Cavities. − Numerical Heat Transfer, Part A: Applications, vol.67, No.6, pp.605-631. https://doi.org/10.1080/10407782.2014.949133.
  • [21] Liu F. and Wang L. (2009): Analysis on multiplicity and stability of convective heat transfer in tightly curved rectangular ducts. − International Journal of Heat and Mass Transfer, vol.52, pp.5849–5866. https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.019.
  • [22] Watanabe T. and Yanase S. (2013): Bifurcation study of three-dimensional solutions of the curved square-duct flow. − Journal of the Physical Society of Japan, vol.82 (074402). https://doi.org/10.7566/JPSJ.82.074402.
  • [23] Dolon S.N., Hasan M.S., Ray S.C. and Mondal R.N. (2019): Vortex-structure of secondary flows with effects of strong curvature on unsteady solutions through a curved rectangular duct of large aspect ratio. − AIP Conference Proceedings, vol.2121 (050004). https://doi.org/10.1063/1.5115891.
  • [24] Nowruzi H., Ghassemi H. and Nourazar S.S. (2019): Hydrodynamic stability study in a curved square duct by using the energy gradient method. − Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol.41 (288). https://doi.org/10.1007/s40430-019-1790-z.
  • [25] Wang X.K., Li Y.L., Yuan S.Q. and Tan S.K. (2018): Flow past a near-wall retrograde rotating cylinder at varying rotation and gap ratios. – Ocean Engineering, vol.156, pp.240-251. https://doi.org/10.1016/j.oceaneng.2018.03.015.
  • [26]Rahmani H., Norouzi M. and Birjandi A.K. (2019): An exact solution for transient anisotropic heat conduction incomposite cylindrical shells. − Journal of Heat Transfer, ASME, vol.141, No.10(101301).https://doi.org/10.1115/1.4044157.
  • [27] Nobari M.R.H, Ahrabi B.R. and Akbari G. (2009): A numerical analysis of developing flow and heat transfer in a curved annular pipe. − International Journal of Thermal Sciences, vol.48, pp.1542–1551. https://doi.org/10.1016/j.ijthermalsci.2008.12.004.
  • [28] Zhang J., Zhang B. and Ju J. (2001): Fluid flow in a curved rectangular duct.− International Journal of Heat and Fluid Flow, vol.22, pp.582-592. https://doi.org/10.1016/S0142-727X(01)00126-6.
  • [29] Mondal R.N., Watanabe T., Hossain M.A. and Yanase S. (2017): Vortex-structure and unsteady solutions with convective heat transfer trough a curved duct. − Journal of Thermophysics and Heat Transfer, vol.31, No.1, pp.243-254.https://doi.org/10.2514/1.T4913.
  • [30] Yamamoto K., Wu X., Nozaki K. and Hayamizu Y. (2006): Visualization of Taylor–Dean flow in a curved duct of square cross-section. − Fluid Dynamics Research, vol.38, pp.1-18. https://doi.org/10.1016/j.fluiddyn.2005.09.002.
  • [31] Kim Y.I., Kim S.H., Hwang Y.D. and Park J.H. (2011): Numerical investigation on the similarity of developing laminar flows in helical pipes. – Nuclear Engineering and Design, vol.241, pp.5211-5224. https://doi.org/10.1016/j.nucengdes.2011.09.020.
  • [32] Wu X., Lai S., Yamamoto K. and Yanase S. (2013): Numerical analysis of the flow in a curved duct. − Advanced Materials Research, vol.706-708, pp.1450-1453. https://doi.org/10.4028/www.scientific.net/AMR.706-708.1450.
  • [33] Sultana M.N., Hasan M.S. and Mondal R.N. (2019): A numerical study of unsteady heat and fluid flow through a rotating curved channel with variable curvature. − AIP Conference Proceedings, vol.2121 (030009). https://doi.org/10.1063/1.5115854.
  • [34] Li Y., Wang X., Zhou B., Yuan S. and Tan S.K. (2017): Dean instability and secondary flow structure in curved rectangular ducts. − International Journal of Heat and Fluid Flow, vol.68, pp.189-202. https://doi.org/10.1016/j.ijheatfluidflow.2017.10.011.
  • [35] Norouzi M., Kayhani M.H., Nobari M.R.H. and Demneh M.K. (2009): Convective heat transfer of viscoelastic flow in a curved duct. − World Academy of Science, Engineering and Technology, International Journal of Mechanical and Mechatronics Engineering, vol.3, No.8, pp.921-927. doi.org/10.5281/zenodo.1081071.
  • [36] Ghobadi M. and Muzychka Y.S. (2015): A review of heat transfer and pressure drop correlations for laminar flow in curved circular ducts.− Heat Transfer Engineering, vol.37, No.10, pp.815-839. https://doi.org/10.1080/01457632.2015.1089735.
  • [37] Sasmito A.P., Kurnia J.C. and Mujumdar A.S. (2011): Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes. − Nanoscale Research Letters, vol.6(376). https://doi.org/10.1186/1556-276X-6-376.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05aaf093-f1cb-4a2c-ab5f-26d5f89ce654
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.