PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Porównanie właściwości fibrokompozytu na bazie piasków odpadowych do wymagań normowych dotyczących betonu zwykłego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Comparison of properties of steel fibre fine aggregate composite based on waste sand to the standard requirements for ordinary concrete
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wyniki badań wpływu zawartości stalowego zbrojenia rozproszonego na szereg właściwości fibrokompozytów zbrojonych włóknami stalowymi wytworzonych na bazie piasków odpadowych. Autorzy podjęli także próbę wyselekcjonowania takiego fibrokompozytu, którego właściwości spełniłyby wymagania stawiane materiałom konstrukcyjnym i były lepsze niż dla betonu zwykłego. Przedstawiono szereg zalet i wad zastosowania takich materiałów. Poruszono także aspekt ekologiczny zagospodarowania hałd piasku będących wynikiem procesu hydroklasyfikacji w trakcie pozyskiwania kruszyw grubych.
EN
The article presents the results of studies on the influence of steel fibre reinforcement on a series of properties exhibited by fine aggregate composite based on waste sand. The authors also made an attempt to select such a composite which properties would meet the requirements laid out for construction materials, and exceed those of ordinary concrete. A list of advantages and disadvantages of applying such materials has been presented. The aspect of the ecological management of sand heaps which occurs as a result of the hydroclassification process when obtaining coarse aggregates has also been touched upon.
Czasopismo
Rocznik
Strony
98--104
Opis fizyczny
Bibliogr. 43 poz., il., tab.
Twórcy
  • Politechnika Koszalińska, Wydział Inżynierii Lądowej, Środowiska i Geodezji
autor
  • Politechnika Koszalińska, Wydział Inżynierii Lądowej, Środowiska i Geodezji
Bibliografia
  • [1] Leung H.Y., Flexural capacity of concrete beams reinforced with steel and fibre-reinforced polymer (FRP) bars. Journal of Civil Engineering and Management, nr 10 (3): 209-215/2004
  • [2] Yazıcı S., Inan G., Tabak V., Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC, Construction and Building Materials, nr 21: 1250–1253/2007
  • [3] Głodkowska W., Kobaka J., The Model of Brittle Matrix Composites for Distribution of Steel Fibres. Journal of Civil Engineering and Management, nr 18(1): 145-150/ 2012
  • [4] Ding Y., Kusterle W., Compressive stress-strain relationship of steel fibre-reinforced concrete at early age. Cement and Concrete Research, nr 30: 1573-1579/2000
  • [5] Tso-Liang T. et al., Development and validation of numerical model of steel fiber reinforced concrete for high–velocity impact. Computational Materials Science, nr 42: 90–99/2008
  • [6] Zhi-Liang W. et al., Stress–strain relationship of steel fiber-reinforced concrete under dynamic compression. Construction and Building Materials, nr 22: 811–819/2008
  • [7] Uygunoğlu T., Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete. Materials and Structures, nr 41: 1441–1449/2008
  • [8] Wang Z.L., Wu L.P., Wang J.G., A study of constitutive relation and dynamic failure for SFRC in compression. Construction and Building Materials, nr 24: 1358–1363/2010
  • [9] Dobashi H. et al., Development of Steel Fiber Reinforced Highly Flowable Concrete Segments and Application to Construction. In Proceedings of the World Tunnel Congress and 32nd ITA Assembly, Seoul 2006
  • [10] Sukontasukkul P. et al, Post-crack (or post-peak) flexural response and toughness of fiber reinforced concrete after exposure to high temperature. Construction and Building Materials, nr 24: 1967–1974/2010
  • [11] Beňoa J., Hilara M., Steel fibre reinforced concrete for tunnel lining – verification by extensive laboratory testing and numerical modelling. Acta Polytechnica, nr 53(4): 329–337/2013
  • [12] Gribniak V. et al., Deriving stress–strain relationships for steel fibre concrete in tension from tests of beams with ordinary reinforcement. Engineering Structures, nr 42: 387–395/2012
  • [13] Bank L.C., A model specification for fiber reinforced non-participating permanent formwork panels for concrete bridge deck construction. Construction and Building Materials, nr 23: 2664–2677/2009
  • [14] Shakya K. et al., Application of steel fibers in beam-column joints of rigid-framed railway bridges to reduce longitudinal and shear rebars. Construction and Building Materials, nr 27: 482–489/2012
  • [15] Zhang Y. et al., Experimental and numerical investigation of the seismic performance of hollow rectangular bridge piers constructed with and without steel fiber reinforced concrete. Engineering Structures, nr 48: 255–265/2013
  • [16] Zollo R.F., Fiber-reinforced concrete: an overview after 30 years of development. Cement and Concrete Composites, nr 19(2): 107–122/1997
  • [17] Fuente A. et al., A new design method for steel fibre reinforced concrete pipes. Construction and Building Materials, nr 30: 547–555/2012
  • [18] Salehian H., Barros J.A.O., Assessment of the performance of steel fibre reinforced self-compacting concrete in elevated slabs. Cement and Concrete Composites, nr 55: 268–280/2015
  • [19] Tao Z. et al., Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete. Thin-Walled Structures, nr 46: 1113–1128/2008
  • [20] Szmagiera E., Influence of concrete and fibre concrete on the load-carrying capacity and deformability of composite steel-concrete columns. Journal of Civil Engineering and Management, nr 13(1): 55-61/2007
  • [21] Sukontasukkul P., Jamsawang P., Use of steel and polypropylene fibers to improve flexural performance of deep soil-cement column. Construction and Building Materials, nr 29: 201–205/2012
  • [22] Arnau O., Molins C., Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 2: Numerical simulation. Tunnelling and Underground Space Technology, nr 26: 778–788/2011
  • [23] Arnau O., Molins C., Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 1: Test configuration and execution. Tunnelling and Underground Space Technology, nr 26: 764–777/2011
  • [24] Chiaia B. et al., Combining fiber-reinforced concrete with traditional reinforcement in tunnel linings. Engineering Structures, nr 31: 1600–1606/2009
  • [25] Kasper T., Edvardson C., Wittenben G., Neumann D., Lining design for the district heating tunnel in Copenhagen with steel fibre reinforced concrete segments. Tunnelling and Underground Space Technology, nr 23(5): 574–587/2008
  • [26] Sevil T., Baran M., Bilir T., Canbay E., Use of steel fiber reinforced mortar for seismic strengthening. Construction and Building Materials, nr 25(2): 892-899/2011
  • [27] Schimmelpfennig K., Borgerhoff M., Development and application of a material law for steel-fibre-reinforced concrete with regard to its use for pre-stressed concrete reactor vessels. Nuclear Engineering and Design, nr 156: 181–188/1995
  • [28] Głodkowska W., Kobaka J., Application of Waste Sands for Making Industrial Floors. Rocznik Ochrony Srodowiska, nr 11 (1): 193–206/2009
  • [29] PN-EN 14651+A1:2007. Metoda badania betonu zbrojonego włóknem stalowym – Pomiary wytrzymałości na rozciąganie przy zginaniu (granica proporcjonalności LOP)
  • [30] PN-EN 12390–3:2011. Badania betonu – Część 3: Wytrzymałość na ściskanie próbek do badań.
  • [31] PN-EN 12390–6:2011. Badania betonu – Część 6: Wytrzymałość na rozciąganie przy rozłupywaniu próbek do badań
  • [32] PN-EN 12390–7:2011. Badania betonu – Część 7: Gęstość betonu
  • [33] ISO 6784. Concrete – Determination of static modulus of elasticity in compression
  • [34] Weiler B., Grosse C.U., Elastic constants their dynamic measurement and calculation, Otto Graf Journal, 1995
  • [35] PN-EN 14157:2005. Kamień naturalny – Oznaczanie odporności na ścieranie
  • [36] PN-EN 12350–3:2011. Badania mieszanki betonowej – Część 3: Badanie konsystencji metodą Vebe
  • [37] ITB 194/98 Badania cech mechanicznych betonu na próbkach wykonanych w formach, Instytut Techniki Budowlanej, Warszawa 1998
  • [38] Głodkowska W., Kobaka J., Modelling of properties and distribution of steel fibres within a fine aggregate concrete. Construction and Building Materials, nr 44: 645–653/2013
  • [39] Maidl B.R., Steel Fibre Reinforced Concrete. Ernst & Sohn, Berlin 1995
  • [40] PN-83/B-06256. Beton odporny na ścieranie
  • [41] PN-EN 1992–1–1:2008. Eurokod 2 – Projektowanie konstrukcji z betonu – Część 1–1: Reguły ogólne i reguły dla budynków
  • [42] www.cennik-budowlany.pl
  • [43] Głodkowska W., Laskowska-Bury J., Piaski odpadowe jako wartościowe kruszywo do wytwarzania fibrokompozytów. Annual Set The Environmental Protection, nr 17: 507–525/2015
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05a20524-df6c-4e01-91d9-7c79c490b8f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.