PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical sensitivity and reflected power through a D-shape optical fibre sensor

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the reflection properties and sensitivity of a D-shape optical fibre sensor are investigated theoretically and numerically with the emphasis on the metal layer [gold (Au), silver (Ag), copper (Cu), and aluminum (Al)]. Maxwell’s equations are used to determine the electric and magnetic fields of the incident waves at each layer. Snell's law is applied and the boundary conditions are imposed at each layer interface to calculate the reflected power and sensitivity of the sensor. In the numerical results, the mentioned power is computed and illustrated as a function of wavelength, angle of incidence, metal layer thickness and refractive index of the external medium when the metal layer changes. The variation of sensitivity with the wavelength of the incident radiations is also proposed for some of the given metals.
Słowa kluczowe
Twórcy
autor
  • Department of Physics, Faculty of Science, Islamic University of Gaza P.O. 108, Gaza, Gaza Strip, Palestinian Authority
autor
  • Department of Physics, Faculty of Science, Islamic University of Gaza P.O. 108, Gaza, Gaza Strip, Palestinian Authority
Bibliografia
  • 1. F. Ansari, Applications of Fibre-Optic Sensors in Engineering Mechanics, American Society of Civil Engineering, ISBN 0-87262-887-6, 1993.
  • 2. J.M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology, John Wiley and Sons, Chichester, 2002.
  • 3. J.R. Van Steenkiste and S. George Springer, Strain and Temperature Measurement with Fibre Optic Sensors, CRC Press, 1997.
  • 4. A.D. Kersey, “A review on recent developments in fibre optic sensor technology”, Opt. Fibre Technol. 2, 291 (1996).
  • 5. B. Lee, “Review of the present status of optical fibre sensors”, Opt. Fibre Technol. 9, 57 (2003).
  • 6. A.D. Kersey, “A review of recent developments in fibre optic sensor technology, fibre optic smart structures”, U.S. Naval Research Laboratory, Washington, 13, (1999).
  • 7. M.H. Chiu, S.F. Wang, and R.S. Chang, “D-type fibre biosensor based on surface plasmon resonance technology and heterodyne interferometry”, Opt. Lett. 30, 233-235 (2005).
  • 8. M.H. Fernandez-Valdivielso, I.R. Matias, and F.J. Arregui, “Thermochronic-effect-based temperature optical fibre sensor for underwater applications”, Opt. Eng. 42, 656-661 (2003).
  • 9. R.C. Jorgenson, “A surface plasmon resonance side active retro-reflecting sensor”, Sens. Actuators B73, 236-248 (2001).
  • 10. M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fibre optic surface plasmon resonance sensor with silver film”, Sens. Actuators B101, 368-372 (2004).
  • 11. D.F. Santos, A. Guerreiro, and J.M. Baptista, “Numerical investigation of a refractive index SPR D-type optical fibre sensor using COMSOL Multiphysics”, Photonic Sensors 1, 61-66, (2013).
  • 12. B.D. Gupta and A.K. Sharma, “Sensitivity evaluation of a multi-layered structure plasmon resonance-based fibre optic sensor”, Sens. Actuators B107, 40-46 (2005).
  • 13. W.B. Lin, N. Jaffrezic-Renault, A Gagnaire, and H. Gagnaire, “The effect of polarization of the incident light-model-ling and analysis of a SPR multimode optical fibre sensor”, Sens. Actuators 84, 198-204 (2000).
  • 14. S.F. Wang, M.H. Chiu, J.C. Hu, R.S. Chang, and F.T. Wang, “Theoretical analysis and experimental evaluation of D-type optical fibre sensor with a thin gold film”, Opt. Commun. 253, 283-289 (2005).
  • 15. N.K. Sharma, “Performance of different metals in optical fibre-based plasmon resonance sensor”, Pramana J Phys. 78, 417-427 (2011).
  • 16. M.H. Chiu, C.H. Shih, and M.H. Chi, “Optimum sensitivity of single-mode D-type optical fibre sensor in the intensity measurement”, Sens. Actuators B123, 1120-1124 (2007).
  • 17. M.H. Chiu and C.H. Shih, “Searching for optimal sensitivity of single-mode D-type optical fibre sensor in the phase measurement”, Sens. Actuators B131, 596-601 (2008).
  • 18. R.A. Shelby, Thesis (PhD.), University of California, San Diego, Microwave Experiments with Left-Handed Materials, Bell and Howell Information and Learning Company, 2001.
  • 19. J.A. Kong, Theory of Electromagnetic Waves, Wiley, New York, 2005.
  • 20. M.F. Ubeid, M.M. Shabat, and M.O. Sid-Ahmed, “Effect of negative permittivity and permeability on the transmission of electromagnetic waves through a structure containing left-handed material”, Natural Science 3, 328-333 (2011).
  • 21. M.F. Ubeid, M.M. Shabat, and M.O. Sid-Ahmed, “Numerical study of negative-refractive index ferrite waveguide”, J. Nano Electron. Phys. 4, 01009(1-4) (2012).
  • 22. C. Caloz and T. Itoh, Electromagnetic Metamaterials, John Wiley and Sons, New Jersey, 2006.
  • 23. A.K. Sharma and B.D. Gupta, “On the performance of different bimetallic combinations in surface plasmon resonance based fibre optic sensors”, J. Appl. Phys. 101, 093111-1-093111-6, (2007).
  • 24. O.V. Buton, K.M. Golant, A.L. Tomashuk, and M.J N. Van Stralen, “Refractive index dispersion of doped silica for fibre optics”, Opt. Commun. 213, 301-308 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05a06079-da4c-4f0d-9cd6-f7d2d28bab18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.