PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of increased temperature of lower end-fitting of a composite long rod insulator on its mechanical strength under variable loads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes results of tensile mechanical strength testing of two types of composite suspension line insulators from two manufacturers. In order to take into account the operation of composite insulators in overhead transmission lines with high-temperature low-sag (HTLS) conductors, the testing of their static and fatigue strength was performed at both ambient and elevated temperatures. The results showed that the static mechanical strength of composite insulators decreased with an increase in the temperature of the lower end fitting of the insulator, and proved that it followed a third-degree polynomial function. Calculations performed demonstrated that a significant cause of reduction in strength was the increase in the radial stress following the temperature increase in the crimped glassepoxy resin core of the insulator. The results of the fatigue strength testing demonstrated that the increase in the temperature of the lower end fitting of the insulator up to 85°C degree had a little effect on the fatigue strength of the tested composite insulators.
Rocznik
Strony
392--405
Opis fizyczny
Bibliogr. 18 poz., rys., tab., zdj.
Twórcy
  • Institute of Power Engineering ul. Mory 8, 01-330 Warsaw, Poland
  • Wroclaw University of Technology ul. Smoluchowskiego 25, 50-370 Wroclaw, Poland
  • Institute of Power Engineering ul. Mory 8, 01-330 Warsaw, Poland
Bibliografia
  • [1] Uliasz P., Material selection and design of construction for high temperature conductors made of AlZr alloys, Ph.D Thesis, Department of Non-Ferrous Metals, AGH University, Kraków (2010).
  • [2] Geary R., Condon T., Kavanagh T., Amstrong O., Doyle J., Introduction of high temperature low sag conductors to the Irish transmission grid, Proceedings of CIGRE, paper B2-104 (2012).
  • [3] Fujii O., Mizuno Y., Naito K., Temperature of insulators as heated by conductor, IEEE Trans. Power Delivery, vol. 22, no. 1, pp. 523–526 (2007), DOI: 10.1109/TPWRD.2006.887100.
  • [4] CIGRE booklet no. 331, Considerations relating to the use of high temperature conductors (2007).
  • [5] Stephen R., Considerations relating to the use of high temperature conductors, ELECTRA, vol. 34, no. 234, pp. 29–37 (2007).
  • [6] Kiewitt W., Wunkte M., Bardl R., Kűhnel C., Laudon D., Stengel D., Comparative study of the long-term reliability of HTLS conductor systems, Proceedings of CIGRE, paper no. B2–204 (2018).
  • [7] IEC TR 62039, Selection guidelines for polymeric materials for outdoor use under HV stress (2021).
  • [8] IEC 61109, Insulators for overhead lines – Composite suspension and tension insulators for a.c. systems with a nominal voltage greater than 1000 V – Definitions, test methods and acceptance criteria (2008).
  • [9] Wańkowicz J., Bielecki J., Models of long-term mechanical strength of long rod composite insulators, IEEE Trans. Dielectr. Electr. Insul., vol. 17, no. 2, pp. 360–367 (2010), DOI: 10.1109/TDEI.2010.5448089.
  • [10] Wańkowicz J., Bielecki J., Life estimation for long rod composite insulators subjected to accelerating ageing by combined static and cyclic loading, IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 2, pp. 106–113 (2011), DOI: 10.1109/TDEI.2011.5704499.
  • [11] Wańkowicz J., Bielecki J., Composite insulators for distribution lines and 110 kV transmission lines – Recommended characteristics, tests and guidelines for selection (monograph), Wydawnictwo PTPiREE (in Polish) (2012).
  • [12] Bielecki J., Long-term mechanical and electrical strength of suspension and tension composite insulators subjected to cyclic loads, Ph.D Thesis, Institute of Power Engineering (IEN) (2010).
  • [13] Bielecki J., Wańkowicz J., Durability forecast of long rod composite insulators operating under variable mechanical loading conditions, Archives of Electrical Engineering, vol. 71, no. 3, pp. 701–715 (2022), DOI: 10.24425/aee.2022.141680.
  • [14] IEC 62217, Polymeric HV insulators for indoor and outdoor use – General definitions, test methods and acceptance criteria (2012).
  • [15] PSE SA – Technical Standard Specification– 400 kV overhead transmission line, Annex 7c – Suspension composite insulators for 400 kV power grid (2015).
  • [16] CIGRE, Green Book on Overhead Lines (2014).
  • [17] Guery D., Lilien J.L., Destine J., Guerard S.L., Waering J.M., Gili J.M., Gogard B., Libert T., Aeolian vibrations on high voltage lines, comparative selfdampings evaluated on the field, Proceedings of CIGRE, paper B2-214 (2008).
  • [18] Niezgodziński M.E., Niezgodziński T., Strength of Materials, Wydawnictwo Naukowe PWN (in Polish) (2010).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05966e29-6c88-427d-99c8-979558b30e7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.