PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of alkali metal promoters on catalytic performance of Co-based catalysts in selective hydrogenation of aniline to cyclohexylamine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a series of Co-based catalysts with alkali metal carbonate promoters were prepared to investigate the interrelation between promotion effect of these carbonates and catalytic performance for aniline hydrogenation to cyclohexylamine in vapour phase. The chemical promoters Li2CO3 and Na2CO3 leading to decrease in catalytic activity of cobalt catalysts for aniline hydrogenation. Catalysts with K2CO3 and Cs2CO3 loadings have practically no catalytic activity for hydrogenation of aniline. Results of TPD of aniline proved that presence of alkali metals carbonates restricts the adsorption of aniline on the surface of cobalt catalysts. Further, it was found that the addition of Na2CO3 greatly enhances the catalytic selectivity towards the cyclohexylamine and inhibits the consecutive reactions of cyclohexylamine leading to formation of by-products such as dicyclohexylamine and N-phenylcyclohexylamine.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wz.
Twórcy
autor
  • Department of Organic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
  • Department of Organic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
  • Department of Organic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
Bibliografia
  • 1. Chaudhari, Ch., Sato, K., Ikeda, Y., Terada, K., Abe, N. & Nagaoka, K. (2021). One-pot synthesis of cyclohexylamine and N-aryl pyrroles via hydrogenation of nitroarenes over the Pd0.5Ru0.5-PVP catalyst. New. J. Chem. 45, 9743–9746. DOI: 10.1039/D1NJ00922B.
  • 2. Araki, S., Nakanishi, K., Tanaka, A. & Kominami, H. (2020). A ruthenium and palladium bimetallic system superior to a rhodium co-catalyst for TiO2-photocatalyzed ring hydrogenation of aniline to cyclohexylamine. J. Catal. 389, 212–217. DOI: 10.1016/j.jcat.2020.05.035.
  • 3. Ásgeirsson, B., Markússon, S., Hlynsdóttir, S. S., Helland, R. & Hjörleifsson, J.G. (2020). X-ray crystal structure of Vibrio alkaline phosphatase with the non-competitive inhibitor cyclohexylamine. Biochem. Biophys. Rep. 24, 100830–100840. DOI: 10.1016/j.bbrep.2020.100830.
  • 4. Ranjbar, S., Soltanabadi, A. & Fakhri, Z. (2016). Experimental and Computational Studies of Binary Mixtures of Isobutanol + Cyclohexylamine. J. Chem. Eng. Data. 61(9), 3077–3089. DOI: 10.1021/acs.jced.6b00158.
  • 5. Senthil, K., Elangovan, K., Senthil, A. & Vinitha, G. (2021). Synthesis, growth, optical, mechanical, thermal, dielectric and third order nonlinear optical properties of cyclohexylamine derivative single crystals. Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 247, 119063–119071. DOI: 10.1016/j.saa.2020.119063.
  • 6. Beepala, S. K., Mitta, H., Sk, H., Balla, P. & Komandur, V. R. Ch. (2022). Reductive amination of cyclohexanol/cyclohexanone to cyclohexylamine using SBA-15 supported copper catalysts. J. Indian. Chem. Soc. 99(6), 100451–100458. DOI: 10.1016/j.jics.2022.100451.
  • 7. Churro, R., Mendes, F., Araújo, P., Ribeiro, F., Peres, J. & Madeira, L. M. (2021). Statistical modelling of the amination reaction of cyclohexanol to produce cyclohexylamine over a commercial Ni-based catalyst. Chem. Eng. Res. Des. 170, 189–200. DOI: 10.1016/j.cherd.2021.03.029.
  • 8. Wen, J., You, K., Liu, X., Jian, J., Zhao, F., Liu, P., Ai, Q. & Luo, H. (2019). Highly selective one-step catalytic amination of cyclohexene to cyclohexylamine over HZSM-5. Catal. Commun. 127, 64–68. DOI: 10.1016/j.catcom.2019.05.007.
  • 9. Kowalewski, E., Krawczyk, M., Słowik, G., Kocik, J., Pieta, I. S., Chernyayeva, O., Lisovytskiy, D., Matus, K. & Śrębowata, A. (2021). Continuous-flow hydrogenation of nitrocyclohexane toward value-added products with CuZnAl hydrotalcite derived materials. Appl. Catal. A: Gen. 618, 118134–118145. DOI: 10.1016/j.apcata.2021.118134.
  • 10. Axet, M. R., Conejero, S. & Gerber, I. C. (2018). Ligand Effects on the Selective Hydrogenation of Nitrobenzene to Cyclohexylamine Using Ruthenium Nanoparticles as Catalysts. Appl. Nano. Mater. 1(10), 5885–5894. DOI: 10.1021/acsanm.8b01549.
  • 11. Li, X., Wang, Z., Mao, S., Chen, Y., Tang, M., Li, H. & Wang, Y. (2018). Insight into the Role of Additives in Catalytic Synthesis of Cyclohexyl-amine from Nitrobenzene. Chin. J. Chem. 36, 1191–1196. DOI: 10.1002/cjoc.201800380.
  • 12. Chatterjee, M., Sato, M., Kawanami, H., Ishizaka, T., Yokoyama, T. & Suzuki, T. (2011). Hydrogenation of aniline to cyclohexylamine in supercritical carbon dioxide: Significance of phase behaviour. Appl. Catal. A: Gen. 396, 186–193. DOI: 10.1016/j.apcata.2011.02.016.
  • 13. Greenfield, H. (1964). Hydrogenation of Aniline to Cyclohexylamine with Platinum Metal Catalysts. J. Org. Chem. 29(10), 3082–3084. DOI: 10.1021/jo01033a512.
  • 14. Yin, Z., Zeng, H., Wu, J., Zheng, S. & Zhang, G. (2016). Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and Cyclic Secondary Amines via a “Hydrogen-Borrowing” Strategy. ACS Catal. 6(10), 6546–6550. DOI: 10.1021/acscatal.6b02218.
  • 15. Valeš, R., Dvořák, B. & Krupka, J. (2021). Thermodynamic analysis on disproportionation process of cyclohexylamine to dicyclohexylamine. Pol. J. Chem. Tech. 23(3), 63–48. DOI: 10.2478/pjct-2021-0029.
  • 16. Hagihara, H. & Etsuro, E. (1965). The Catalytic Hydrogenation of Aniline. Bull. Chem. Soc. Jpn. 38(12), 2094–2100. DOI: 10.1246/bcsj.38.2094.
  • 17. Mink, G. & Horváth, L. (1998). Hydrogenation of aniline to cyclohexylamine on NaOH-promoted or lanthana supported nickel. React. Kinet. Catal. Lett. 65, 59–65. DOI: 10.1007/BF02475316.
  • 18. Roose, P., Eller, K., Henkes, E., Rossbacher, R. & Höke, H. (2015). Amines, Aliphatic. In Ullmann‘s Encyclopedia of Industrial Chemistry. Weinhelm, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/14356007.a02_001.pub2.
  • 19. Narayanan, K. & Unnikrishnan, R. P. (1997). Comparison of hydrogen adsorption and aniline hydrogenation over co-precipitated Co/Al2O3 and Ni/Al2O3 catalysts. J. Chem. Soc., Faraday Trans. 93(10), 2009–2013. DOI: 10.1039/A608074J.
  • 20. Nishimura, S., Yutaka, K., Yoshiharu, O. & Yoshio, F. (1971). The Ruthenium-Catalyzed Hydrogenation of Aromatic Amines Promoted by Lithium Hydroxide. Bull. Chem. Soc. Jpn. 44(1), 240–243. DOI: 10.1246/bcsj.44.240.
  • 21. Nishimura, S., Shu, T., Hara, T. & Takagi, Y. (1966). The Hydroxide-Blacks of Ruthenium and Rhodium as Catalysts for the Hydrogenation of Organic Compounds. II. The Effects of Solvents and Added Alkalis in the Hydrogenation of Aniline. Bull. Chem. Soc. Jpn. 39(2), 329–333. DOI: 10.1246/bcsj.39.329.
  • 22. Valeš, R., Dvořák, B. & Krupka, J. (2021). The effect of water and substituents of aromatic ring on its hydrogenation over a cobalt catalyst. Revealed in Reference: 8th International Conference on Chemical Technology, 3-5 May 2021 (pp. 98–103). Prague, Czech Republic: Czech Society of Industrial Chemistry. ebook: 978-80-88307-08-2.
  • 23. Díaz, A., Acosta, D. R., Odriozola, J. A. & Montes, M. (1997). Characterization of Alkali-Doped Ni/SiO2 Catalysts. J. Phys. Chem. B. 101(10), 1782–1790. DOI: 10.1021/jp963145u.
  • 24. Dvořák, B. & Pašek, J. (1967). Einfluss der Zusammensetzung, der Herstellungsbedingungen und der Struktur des Kobaltkatalysators auf seine katalytische Aktivität für die Anilinhydrierung in der Gasphase. Collect. Czech. Chem. Commun. 32(10), 3476–3492. DOI: 10.1135/cccc19673476.
  • 25. Strejcová, D. (2008). Effect of alkali metals carbonates on reduction rate of Co3O4 and strength of interactions between hydrogen and cobalt metal. Published bachelor thesis, University of Chemistry and Technology, Prague, Czech Republic.
  • 26. Veselá, D. (2016). Study of selected properties of cobalt catalysts. Published doctoral dissertation, University of Chemistry and Technology, Prague, Czech Republic.
  • 27. Li, D., Ichikuni, N., Shimazu, S. & Uematsu, T. (1998). Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation. Appl. Catal. A: Gen. 172(2), 351–358. DOI: 10.1016/S0926-860X(98)00139-2.
  • 28. Shi, H., Yang, H., Gao, P., Chen, X., Liu, H., Zhong, L., Wang, H., Wei, W. & Sun, Y. (2018). Effect of alkali metals on the performance of CoCu/TiO2 catalysts for CO2 hydrogenation to long-chain hydrocarbons. Chin. J. Catal. 39(8), 1294–1302. DOI: 10.1016/S1872-2067(18)63086-4.
  • 29. Pradeep, S.M., Weibin, L., Yijiao, J. & Huang, J. (2021). Cu-Based Nanocatalysts for CO2 Hydrogenation to Methanol. Energy Fuels. 35(10), 8558–8584. DOI: 10.1021/acs. energyfuels.1c00625.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05951d21-c2b1-450a-8bea-04506e8f69e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.