Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents the results of investigations of the effect of heat treatment temperature on the content of the carbide phase of HS3-1-2 and HS6-5-2 low-alloy high-speed steel. Analysis of the phase composition of carbides is carried out using the diffraction method. It is determined that with increasing austenitising temperature, the intensification of dissolution of M6C carbide increases. As a result, an increase in the grain size of the austenite and the amount of retained austenite causes a significant reduction in the hardness of hardened steel HS3-1-2 to be observed. The results of diffraction investigations showed that M7C3 carbides containing mainly Cr and Fe carbides and M6C carbides containing mainly Mo and W carbides are dissolved during austenitisation. During austenitisation of HS3-1-2 steel, the silicon is transferred from the matrix to carbides, thus replacing carbide-forming elements. An increase in a degree of tempering leads to intensification of carbide separation and this process reduce the grindability of tested steels.
Czasopismo
Rocznik
Tom
Strony
59--62
Opis fizyczny
Bibliogr. 9 poz., rys., tab.
Twórcy
autor
- Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
- Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
- Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
- [1] Jaworski, J. (2009). The influence of grinding parameters of the surface layer of low-alloyed high-speed steel. Archives of Foundry Engineering. 9(1), 103-106.
- [2] Jaworski, J. & Trzepieciński, T. (2016). Research on durability of turning tools made of low-alloy high-speed steel. Kovove Mater. 54(1), 17-25. DOI: 10.4149/km_2016_1_17.
- [3] Pietrowski, S. & Szymczak, T. (2010). Alfinated coating structure on HS6-5-2 (SW7M) high speed steel. Archives of Foundry Engineering. 10(4), 191-198.
- [4] Bochnowski, W. (2009). The influence of arc plasma electric and laser treatment on the structure and properties of the high speed steel. Archives of Foundry Engineering. 9(3), 17-20.
- [5] Lu, L., Hou, L.G., Zhang, J.X., Wang, H.B., Cui, H., Huang, J.F., Zhang, Y.A. & Zhang, J.S. (2016). Improved the microstructures and properties of M3:2 high-speed steel by spray forming and niobium alloying. Mater. Charact. 117, 1-8. DOI: 10.1016/j.matchar.2016.04.010.
- [6] Herranz, G., Romero, A., de Castro, V. & Rodriguez, G.P. (2014). Processing of AISI M2 high speed steel reinforced with vanadium carbide by solar sintering. Mater. Design 54, 934-946. DOI: 10.1016/j.matdes.2013.09.027.
- [7] Xu, L., Xing, J., Wei, S., Zhang, Y. & Long, R. (2007). Optimization of heat treatment technique of high-vanadium high-speed steel based on back-propagation neural networks. Mater. Design. 28(5), 1452-1432. DOI: 10.1016/j.matdes.2006.03.022.
- [8] Cao, H.T., Dong, X.P., Pan, Z., Wu, X.W., Huang, Q.W. & Pei, Y.T. (2016). Surface alloying of high-vanadium high-speed steel on ductile iron using plasma transferred arc technique: Microstructure and wear properties. Mater. Design. 100, 223-234. DOI: 10.1016/j.matdes.2016.03.114.
- [9] Sackl, S., Leitner, H., Clemens, H. & Primig, S. (2016). On the evolution of secondary hardening carbides during continuous versus isothermal heat treatment of high speed steel HS 6-5-2. Mater. Charact. 120, 323-330. DOI: 10.1016/j.matdes.2016.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-059232f1-9973-43b7-b8a0-6f90759794de