PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel robust H1 fuzzy state-feedback control design on nonlinear Markovian jump systems with time-varyin delay

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper considers the problem of designing a robust H∞ fuzzy state-feedback controller for a class of nonlinear Markovian jump systems with time-varying delay. A novel design methodology has been proposed for designing a controller that guarantees the L2-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value. Solutions to the problem are provided in terms of linear matrix inequalities. To illustrate the effectiveness of the design developed in this paper, a numerical example is also provided.
Rocznik
Strony
227--248
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Department of Electronic and Telecommunication Engineering Faculty of Engineering King Mongkut’s University of Technology Thonburi 126 Prachautits Rd., Bangkok 10140, Thailand
Bibliografia
  • 1. Aliyu, M.D.S. and Boukas, E.K. (1998) H∞ control for markovian jump nonlinear systems. Proc. of the 37th IEEE Conference on Decision and Control. IEEE Conference Publications 1, 766–771.
  • 2. An, J. and Wen, G. (2011) Improved stability criteria for time-varying delayed T-S fuzzy systems via delay partitioning approach. Fuzzy Sets and Systems 185, 83–94.
  • 3. Assawinchaichote, W. and Nguang, S. K. (2004a) H∞ fuzzy control design for nonlinear singularly perturbed systems with pole placement constraints: An LMI approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34, 579–588.
  • 4. Assawinchaichote W. and Nguang, S. K. (2004b) H∞ filtering for fuzzy singularly perturbed systems with pole placement constraints: An LMI approach. IEEE Transactions on Signal Processing 52, 579–588.
  • 5. Assawinchaichote, W., Nguang, S. K. and Shi, P. (2004) H∞ output feedback control design for uncertain fuzzy singularly perturbed systems: An LMI approach. Automatica 40, 2147–2152.
  • 6. Assawinchaichote, W., Nguang, S. K., Shi, P. and Boukas, E. K. (2008) H∞ fuzzy state-feedback control design for nonlinear systems with stability constraints: An LMI approach. International Journal Mathematics and Computers in Simulation 78, 514–531.
  • 7. Assawinchaichote, W. (2012) A non-fragile H∞ output feedback controller for uncertain fuzzy dynamical systems with multiple time-scales. International Journal Computers, Communications & Control 7, 8–19.
  • 8. Balasubramaniam, P., Krishnasamy, R. and Rakkiyappan R. (2012) Delay-dependent stability criterion for a class of non-linear singular Markovian jump systems with mode-dependent interval time-varying delays. Communications in Nonlinear Science and Numerical Simulation 17, 3612–3627.
  • 9. Benjelloun, K., Boukas, E. K. and Costa, O. L. V. (1997) H∞ control for linear tume delay with Markovian jumping parameters. Journal of Optimization Theory and Applications 105, 73–95.
  • 10. Boukas, E. K. and Yang, H. (1999) Exponential stabilizability of stochastic systems with Markovian jump parameters. Automatica 35, 1437–1441.
  • 11. Boukas, E. K. and Liu, Z. K. (2001) Suboptimal design of regulators for jump linear system with time-multiplied quadratic cost. IEEE Transaction on Automatic Control 46, 944–949.
  • 12. Boukas, E. K., Liu, Z. K. and Liu, G. X. (2001) Delay-dependent robust stability and H∞ control of jump linear systems with time-delay. International Journal of Control 74, 329–340.
  • 13. Cao, Y. Y. and Frank, P. M. (2001) Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models. Fuzzy Sets and Systems 124, 213–229.
  • 14. Chen, B. S., Tseng, C. S. and He, Y. Y. (2000) Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: An LMI approach. IEEE Transaction on Fuzzy Systems 8, 249–265.
  • 15. Chua, L. O., Komuro, M. and Matsumoto, T. (1986) The double scroll family: I and II. IEEE Transactions on Circuits and Systems, Part I 33, 1072–1118.
  • 16. Dragan, V., Shi, P. and Boukas, E. K. (1999) Control of singularly perturbed system with Markovian jump parameters: An H∞ approach. Automatica 35, 1369–1378.
  • 17. Dynkin, E. B. (1965) Markov Processes. Springer-Verlag, Berlin.
  • 18. Feng, X., Loparo, K. A., Ji, Y. and Chizeck, H. J.(1992) Stochastic stability properties of jump linear system. IEEE Transaction on Automatic Control 37, 38–53.
  • 19. Han, Z. X. and Feng, G. (1998) State-feedback H∞ controller design of fuzzy dynamic system using LMI techniques. IEEE Conference on Fuzzy Systems. IEEE Conference Publications 1, 538–544.
  • 20. Ho, W. H., Chen, S.H., Chen, I. T., Chou, J. H. and Shu, C. C. (2012) Design of stable and quadratic-optimal static output feedback controllers for TS-fuzzy-model-based control systems: an integrative computational approach. International Journal of Innovative Computing, Information and Control 8, 403–418.
  • 21. Ji, Y. and Chizeck, H. J. (1990) Controllability, stabilizability, and continuous–time Markovian jump linear quadratic control. IEEE Transaction on Automatic Control 35, 777–788.
  • 22. Kushner, H. J. (1967) Stochastic Stability and Control. Academic Press, New York.
  • 23. Lee, K. R., Kim, J. H., Jeung, E. T. and Park, H. B. (2000) Output feedback robust H∞ control of uncertain fuzzy dynamic systems with timevarying delay. IEEE Transaction on Fuzzy Systems 8, 657–664.
  • 24. Li, L., Liu, X. and Chai, T. (2009) New approaches on control of T-S fuzzy systems with interval time-varying delay. Fuzzy Sets and Systems 160, 1669–1688.
  • 25. Lin, T. C., Chang, S. W. and Hsu, C. H. (2012) Robust adaptive fuzzy sliding mode control for a class of uncertain discrete-time nonlinear systems. International Journal of Innovative Computing, Information and Control 8, 347–359.
  • 26. Liu, F., Wu, M., He, Y. and Yokoyama, R. (2010) New delay-dependent stability criteria for T-S fuzzy systems with time-varying delay. Fuzzy Sets and Systems 161, 2033–2042.
  • 27. Nguang, S. K. and Shi, P. (2000) Stabilization of a class of nonlinear timedelay systems using fuzzy models. Proc. of the 39th IEEE Conference on Decision and Control. IEEE Conference Publications 5, 4415–4419.
  • 28. Nguang, S. K. and Shi, P. (2001) H∞ fuzzy output feedback control design for nonlinear systems: An LMI approach. Proc. of the 40th IEEE Conference on Decision and Control. IEEE Conference Publications 5, 4352 4357.
  • 29. Nguang, S. K. and Assawinchaichote, W. (2003) H∞ filtering for fuzzy dynamic systems with pole placement. IEEE Transactions on Circuits and Systems, Part I 50, 1503–1508.
  • 30. Rami, M. A. and Ghaoui, L. Ei. (1995) H∞ state-feedback control of jump linear systems. Proc. of the 34th IEEE Conference on Decision and Control. IEEE Conference Publications 1, 951–952.
  • 31. Shi, P. and Boukas, E. K. (1997) H∞ control for Markovian jumping linear system with parametric uncertainty. Journal of Optimization Theory and Applications 95, 75–99.
  • 32. Souza, C. E. de. and Fragoso, M. D. (1993) H∞ control for linear sys tems with Markovian jumping parameters. Control-Theory and Advanced Technology 9, 457–466.
  • 33. Su, X., Shi, P., Wu, L. and Nguang, S. K. (2013a) Induced l2 filtering of fuzzy stochastic systems with time varying delays. Transactions on Systems, Man, and Cybernetics - Part B 43, 1251–1264.
  • 34. Su, X., Shi, P., Wu, L. and Song, Y. D. (2012) A novel approach to filter design for T-S fuzzy discrete-time systems with time-varying delay. IEEE Transaction on Fuzzy Systems 20, 1114–1229.
  • 35. Su, X., Shi, P., Wu, L. and Song, Y. D. (2013b) A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays. IEEE Transaction on Fuzzy Systems 21, 655–671.
  • 36. Tanaka, K., Ikeda, T. and Wang, H. O. (1996) Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stability, H∞ control theory, and linear matrix inequality. IEEE Transactions on Fuzzy Systems 4, 1–13.
  • 37. Tanaka, K., Iwasaki, M. and Wang, H. O. (2001) Switching control of an R/C hovercraft: Stabilization and smooth switching. IEEE Transactions on Systems, Man, and Cybernetics, Part B 31, 1–13.
  • 38. Tian, E. and Peng, C. (2006) Delay-dependent stability analysis and synthesis of uncertain T-S fuzzy systems with time-varying delay. Fuzzy Sets and Systems 157, 544–559.
  • 39. Tian, E., Yue, D. and Zhang, Y. (2009) Delay-dependent robust H∞ control for T-S fuzzy system with interval time-varying delay. Fuzzy Sets and Systems 160, 1708–1719.
  • 40. Wang, H. O., Tanaka, K. and Griffin, M. F. (1996) An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Transaction on Fuzzy Systems 4, 14–23.
  • 41. Wang, H. O., Tanaka, K. and Ikeda, T. (1996) Fuzzy modeling and control of chaotic systems. IEEE International Symposium on Circuits and Systems. IEEE Conference Publications 3, 209–212.
  • 42. Wang, R. J., Lin, W. W. and Wang, W. J. (2004) Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34, 1–4.
  • 43. Wang, W. J. and Lin, W. W. (2000) State feedback stabilization for TS fuzzy time delay systems. T he12th IEEE International Conference on Fuzzy Systems. IEEE Conference Publications 1, 561–565.
  • 44. Yoneyama, J. (2000) Robust control analysis and synthesis for uncertain fuzzy systems with time-delay. T he12th IEEE International Conference on Fuzzy Systems. IEEE Conference Publications 1, 396–401.
  • 45. Yoneyama, J. (2010) Robust control of uncertain fuzzy systems under timevarying sampling. Fuzzy Sets and Systems 161, 859–871.
  • 46. Zhang, D.F., Wang, H., Lu, B. and Wang, Z. (2012) LMI-based fault detection fuzzy observer design with multiple performance constraints for a class of non-linear systems: comparative study. International Journal of Innovative Computing, Information and Control 8, 633–645.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-057e2c1f-cca9-43a7-885b-2fba70eaab07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.