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Abstract: This paper considers the problem of designing a
robust H∞ fuzzy state-feedback controller for a class of nonlinear
Markovian jump systems with time-varying delay. A novel design
methodology has been proposed for designing a controller that guar-
antees the L2-gain of the mapping from the exogenous input noise to
the regulated output to be less than some prescribed value. Solutions
to the problem are provided in terms of linear matrix inequalities.
To illustrate the effectiveness of the design developed in this paper,
a numerical example is also provided.
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1. Introduction

Many physical systems may experience abrupt changes in their structure and
parameter value shifts, caused by phenomena such as component and intercon-
nection failures, parameters shifting, tracking, and the time required to measure
some of the variables at different stages. Such systems can be modelled by a
hybrid system with two components in the state vector. The first one, which
varies continuously, is referred to as the continuous state of the system, and the
second one, which varies discretely, is referred to as the mode of the system.
There has been an increasing interest in these types of systems during the last
decades, mostly due to the growing use of computers in the control of physical
plants, but also as a result of the hybrid nature of physical processes. A special
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class of hybrid systems, known as Markovian jump systems, has been widely
used to model manufacturing systems and communication systems.

In other words, Markovian jump systems are also referred to as hybrid sys-
tems, that is, the state space of the systems contains both continuous (differen-
tial equation) and discrete states (Markov process). Over the past two decades,
the Markovian jump system has been extensively studied by many researchers;
see Benjelloun, Boukas and Costa (1997), Boukas and Yang (1999), Boukas
and Liu (2001), Dragan, Shi and Boukas (1999), Feng et al. (1992), Ji and
Chizeck (1990), Rami and Ghaoui (1995), Shi and Boukas (1997), and Souza
and Fragoso (1993). In Shi and Boukas (1997), the authors have considered the
H∞ control for Markovian jumping linear systems with parametric uncertainty.
The delay-dependent robust stability and the H∞ control of Markovian jump
linear systems with time delay have been investigated in Boukas and Liu (2001).
Although many researchers have studied the control design of Markovian jump
linear system for many years, the design of control for Markovian jump nonlinear
systems remains an open area. Indeed, recently, there has been some attempts
in this domain. In Aliyu and Boukas (1998), Hamilton-Jacobi-equation-based
sufficient conditions for nonlinear Markovian jump systems to have an H∞ per-
formance have been derived. However, until now, it is still very difficult to find
a global solution to the HJE either analytically or numerically.

Over the past two decades, there has also been a rapidly growing interest
in application of fuzzy logic to control problem. Researches have been focused
on its application to industrial processes and a number of successful results
have been reported in the literature. In spite of these successes, there are
many basic issues that still remain to be addressed. One of them is how to
achieve a systematic design that guarantees closed-loop stability. Recently, a
great amount of effort has been devoted to describing a nonlinear system using
the Takagi-Sugeno (TS) and Nguang fuzzy model; see Assawinchaichote and
Nguang (2004) Assawinchaichote et al. (2008), Assawinchaichote (2012), Cao
and Frank (2001), Chen, Tseng and He (2000), Han and Feng (1998), Ho et
al. (2012), Lee et al. (2000), Lin, Chang and Hsu (2012), Nguang and Shi
(2000, 2001), Tanaka et al. (1996, 2001), Wang, Tanaka and Griffin (1996),
Wang, Tanaka and Ikeda (1996), Wang, Lin and Wang (2004), Wang, Tanaka
and Ikeda (2000), Yoneyama (2000), and Zhang et al. (2012). In this TS fuzzy
model, local dynamics in different state space regions are represented by local
linear systems. The overall model of the system is obtained by ”blending” of
these linear models through nonlinear membership functions. In other words, a
TS fuzzy model constitutes essentially a multi-model approach, in which simple
sub-models are fuzzily combined to represent the global behavior of the system.
Unlike conventional modelling techniques, which use a single model to describe
the global behavior of a nonlinear system, fuzzy modelling combines simple (typ-
ically linear) sub-models to describe the global behavior of a nonlinear system.
Based on this fuzzy model, a number of systematic model-based fuzzy control
design methodologies have been developed.

During the past decades, the design of fuzzy H∞ control for a class of non-
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Figure 1. The TS type fuzzy system

linear systems without delays has been seriously investigated and many results
have been reported; e.g., Chen, Tseng and He (2000), Han and Feng (1998),
and Tanaka, Ikeda and Wang (1996). Furthermore, there have been also some
attempts, reported in An and Wen (2011), Balasubramaniam, Krishnasamy and
Rakkiyappan (2012), Cao and Frank (2001), Lee et al. (2000), Li, Liu and Chai
(2009), Liu et al. (2010), Nguang and Shi (2000), Su et al. (2012, 2013), Tian
and Peng (2006), Tian, Yue and Zhang (2009), Wang, Lin and Wang (2004),
Wang and Lin (2003), and Yoneyama (2000, 2010), in which robust fuzzy con-
trol analysis and synthesis for nonlinear time-delay systems have been examined.
Nevertheless, so far, to the best of our knowledge, the global robust H∞ fuzzy
state-feedback control problem for a class of uncertain nonlinear Markovian
jump systems with time-varying delay via an LMI approach has not yet been
considered in the literature.

Therefore, what we intend to do in this paper is to design an H∞ fuzzy
state-feedback controller for a class of nonlinear Markovian jump systems with
time-varying delay, described by the Takagi-Sugeno (TS) fuzzy model. Based
on the LMI approach, we develop a state-feedback controller that guarantees
the L2-gain of the mapping from the exogenous input noise to the regulated
output to be less than a prescribed value. The solutions are given in terms of
a family of linear matrix inequalities. This paper is organized as follows. In
Section 2, system description and definition are presented. In Section 3, based
on an LMI approach we develop a technique for designing a robust H∞ fuzzy
state-feedback controller that guarantees the L2-gain of the mapping from the
exogenous input noise to the regulated output to be less than a prescribed value.
The validity of this approach is demonstrated by an example from the literature
in Section 4. Finally in Section 5, the conclusion is given.
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2. System description and definition

The class of uncertain nonlinear Markovian jump system with time-varying
delay under consideration is described by the following TS fuzzy models:

Plant Rule i:
IF ν1(t) is Mi1 and · · · and νϑ(t) is Miϑ THEN

ẋ(t) = [Ai(η(t)) + ∆Ai(η(t))]x(t) +Adi
(η(t))x(t − τ(t))

+[B1i(η(t)) + ∆B1i(η(t))]w(t)+ [B2i(η(t)) + ∆B2i(η(t))]u(t), x(0) = 0,
z(t) = [C1i(η(t)) + ∆C1i(η(t))]x(t) + [D12i(η(t)) + ∆D12i(η(t))]u(t)
x(t) = ψ(t), t ∈ [−τ, 0], τ(t) ≤ τ

(1)

where Miq(j = 1, 2, · · · , ϑ) are fuzzy sets q for rule i, νi(t) are the premise
variables, x(t) ∈ ℜn is the state vector, u(t) ∈ ℜm is the input, w(t) ∈ ℜp is
the disturbance, which belongs to L2[0,∞), z(t) ∈ ℜs is the controlled output,
the matrices Ai(η(t)), Adi

(η(t)), B1i(η(t)), B2i(η(t)), C1i(η(t)) and D12i(η(t))
are of appropriate dimensions, r is the number of IF-THEN rules, τ(t) ≤ τ
is the bounded time-varying delay in the state, and ψ(t) is a vector-valued
initial continuous function, defined on the interval [−τ, 0]. {η(t)}, t ≥ 0 is a
continuous-time discrete-state homogenous Markov process taking values on a
finite set S = {1, 2, · · · , s} with transition probability matrix Pr := {Pık(t)}
given by

Pık(t) = Pr(η(t +∆) = k | η(t) = ı)

=

{

λık∆+O(∆) if ı 6= k,
1 + λıı∆+O(∆) if ı = k,

(2)

and
∑s

k=1 Pık(t) = 1, where ∆ > 0; lim∆→0
O(∆)
∆ = 0; λık ≥ 0, ı 6= k is the

transition rate from mode ı to mode k; λıı = −∑s

k=1, k 6=ı λık, ı, k ∈ S gives
the infinitesimal generator of the Markov process {η(t), t ≥ 0}.

The matrices ∆Ai(η(t)), ∆B1i(η(t)), ∆B2i(η(t)), ∆C1i(η(t)) and ∆D12i(η(t))
represent the uncertainties in the system and satisfy the following assumption.

Assumption 1

∆Ai(η(t)) = F (x(t), η(t), t)H1i (η(t)), ∆B1i(η(t)) = F (x(t), η(t), t)H2i (η(t)),

∆B2i(η(t)) = F (x(t), η(t), t)H3i (η(t)), ∆C1i(η(t)) = F (x(t), η(t), t)H4i (η(t)),

and ∆D12i(η(t)) = F (x(t), η(t), t)H5i (η(t)),

where Hji(η(t)), j = 1, 2, · · · , 5 are known matrix functions which characterize
the structure of the uncertainties. Furthermore, the following inequality holds:

‖F (x(t), η(t), t)‖ ≤ ρ(η(t)) (3)

for any known positive constant ρ(η(t)).
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Let ̟i(ν(t)) =
∏n

q=1Miq(νq(t)) and µi(ν(t)) =
̟i(ν(t))∑
r
i=1

̟i(ν(t))
, where Miq(νq(t))

is the grade of membership of νq(t) in Miq. It is assumed in this paper that

̟i(ν(t)) ≥ 0, i = 1, 2, · · · , n; and

r
∑

i=1

̟i(ν(t)) > 0

where r is the number of local plant rules, for all t. Therefore,

µi(ν(t)) ≥ 0, i = 1, 2, · · · , n; and

r
∑

i=1

µi(ν(t)) = 1

for all t. For the convenience of notations, let ̟i = ̟i(ν(t)), µi = µi(ν(t)),
η = η(t) and any matrix N(µ, η(t) = ı) = N(µ, ı).

The resulting fuzzy system model is inferred as the weighted average of the
local models of the form:

ẋ(t) = [A(µ, ı) + ∆A(µ, ı)]x(t) +Ad(µ, ı)x(t − τ(t))
+[B1(µ, ı) + ∆B1(µ, ı)]w(t) + [B2(µ, ı) + ∆B2(µ, ı)]u(t), x(0) = 0

z(t) = [C1(µ, ı) + ∆C1(µ, ı)]x(t) + [D12(µ, ı) + ∆D12(µ, ı)]u(t)

(4)

where

A(µ, ı) =

r
∑

i=1

µiAi(ı), Ad(µ, ı) =

r
∑

i=1

µiAdi
(ı), B1(µ, ı) =

r
∑

i=1

µiB1i(ı),

B2(µ, ı) =

r
∑

i=1

µiB2i(ı), C1(µ, ı) =

r
∑

i=1

µiC1i(ı), D12(µ, ı) =

r
∑

i=1

µiD12i(ı),

∆A(µ, ı) =

r
∑

i=1

µi∆Ai(ı) := F (x(t), ı, t)H1(µ, ı),

∆B1(µ, ı) =

r
∑

i=1

µi∆B1i(ı) := F (x(t), ı, t)H2(µ, ı),

∆B2(µ, ı) =

r
∑

i=1

µi∆B2i(ı) := F (x(t), ı, t)H3(µ, ı),

∆C1(µ, ı) =

r
∑

i=1

µi∆C1i(ı) := F (x(t), ı, t)H4(µ, ı),

∆D12(µ, ı) =

r
∑

i=1

µi∆D12i(ı) := F (x(t), ı, t)H5(µ, ı)

withH1(µ, ı) =
∑r

i=1 µiH1i(ı),H2(µ, ı) =
∑r

i=1 µiH2i(ı), H3(µ, ı) =
∑r

i=1 µiH3i(ı),
H4(µ, ı) =

∑r

i=1 µiH4i(ı), and H5(µ, ı) =
∑r

i=1 µiH5i(ı).
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Definition 1 Suppose γ is a given positive real number. A system of the form
(4) is said to have L2[0, Tf ] gain less than or equal to γ if

E

[

∫ Tf

0

{

zT (t)z(t)− γ2wT (t)w(t)
}

dt

]

< 0 (5)

where E[·] denotes the expectation operator.

In this paper, we consider the following H∞ fuzzy state-feedback, which is
inferred as the weighted average of the local models of the form:

u(t) = K(µ, ı)x(t) (6)

where K(µ, ı) =
∑r

j=1 µjKj(ı). Before ending this section, we describe the
problem under our study as follows.

Problem Formulation: Given a prescribedH∞ performance γ > 0, design
an H∞ fuzzy state-feedback controller of the form (6) such that the inequality
(5) is guaranteed.

3. Main results

This section provides LMI-based solutions to the problem of designing a robust
H∞ controller that guarantees the L2-gain of the mapping from the exogenous
input noise to the regulated output to be less than some prescribed value.

Theorem 1 Given the system (4) and a prescribed H∞ performance γ > 0,
the inequality (5) holds if for ı = 1, 2, · · · , s there exist positive definite sym-
metric matrices P (ı), W (ı), and positive constants δ(ı) such that the following
conditions hold:

Ωii(ı) < 0, i = 1, 2, · · · , r, (7)

Ωij(ı) + Ωji(ı) < 0, i < j ≤ r (8)

where

Ωij(ı)=

















Ψij(ı) (∗)T (∗)T (∗)T (∗)T (∗)T
R(ı)B̃T

1i(ı) −γR(ı) (∗)T (∗)T (∗)T (∗)T
W (ı)Adi

(ı) 0 −W (ı) (∗)T (∗)T (∗)T
P (ı) 0 0 −W (ı) (∗)T (∗)T
Υij(ı) 0 0 0 −γR(ı) (∗)T
ZT (ı) 0 0 0 0 −P(ı)

















, (9)

Ψij(ı) = Ai(ı)P (ı)+P (ı)A
T
i (ı) +B2i(ı)Yj(ı)+Y

T
j (ı)BT

2i(ı)+λııP (ı),(10)

Υij(ı) = C̃1i(ı)P (ı) + D̃12i(ı)Yj(ı), (11)

R(ı) = diag {δ(ı)I, I, δ(ı)I, I} , (12)

Z(ı) =
(

√

λı1P (ı) · · ·
√

λı(ı−1)P (ı)
√

λı(ı+1)P (ı) · · ·
√

λısP (ı)
)

, (13)

P(ı) = diag {P (1), · · · , P (ı− 1), P (ı+ 1), · · · , P (s)} , (14)
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with

B̃1i(ı) =
[

I I I B1i(ı)
]

(15)

C̃1i(ı) =
[

γρ(ı)HT
1i(ı)

√
2ℵ(ı)ρ(ı)HT

4i(ı) 0
√
2ℵ(ı)CT

1i(ı)
]T

(16)

D̃12i(ı) =
[

0
√
2ℵ(ı)ρ(ı)HT

5i(ı) γρ(ı)HT
3i(ı)

√
2ℵ(ı)DT

12i(ı)
]T

(17)

ℵ(ı) =



1 + ρ2(ı)
r

∑

i=1

r
∑

j=1

[

‖H2i(ı)
TH2j (ı)‖

]





1

2

. (18)

Furthermore, a suitable choice of the fuzzy controller is

u(t) =

r
∑

j=1

µjKj(ı)x(t) (19)

where

Kj(ı) = Yj(ı)(P (ı))
−1. (20)

Proof. The closed-loop state space form of the fuzzy system model (4) with
the controller (6) is given by

ẋ(t) = [A(µ, ı) +B2(µ, ı)K(µ, ı)]x(t) +Ad(µ, ı)x(t− τ(t)) (21)

+[∆A(µ, ı) + ∆B2(µ, ı)K(µ, ı)]x(t)+
[

B1(µ, ı) + ∆B1(µ, ı)
]

w(t), x(0) = 0,

or, in a more compact form,

ẋ(t) =

[A(µ, ı) +B2(µ, ı)K(µ, ı)]x(t) +Ad(µ, ı)x(t− τ(t)) + B̃1(µ, ı)R(ı)w̃(t),

x(0) = 0,

(22)

where

B̃1(µ, ı) =
[

I I I B1(µ, ı)
]

(23)

w̃(t) = R−1(ı)









F (x(t), ı, t)H1(µ, ı)x(t)
F (x(t), ı, t)H2(µ, ı)w(t)

F (x(t), ı, t)H3(µ, ı)K(µ, ı)x(t)
w(t)









. (24)

Consider a Lyapunov-Krasovskii functional candidate as follows:

V (x(t), ı) = γxT (t)Q(ı)x(t) + γ

∫ t

t−τ(t)

xT (v)G(ı)x(v)dv, ∀ ı ∈ S (25)

where Q(ı) = P−1(ı) > 0 and G(ı) = W−1(ı) > 0. For this choice, we have
V (0, ı0) = 0 and V (x(t), ı) → ∞ only when ‖x(t)‖ → ∞.
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Now, consider the weak infinitesimal operator ∆̃ of the joint process {(x(t), ı),
t ≥ 0}, which is the stochastic analog of the deterministic derivative; see Krusher
(1997). {(x(t), ı), t ≥ 0} is a Markov process with infinitesimal operator given
by, see Souza (1993),

∆̃V (x(t), ı)

= γxT (t)
[

Q(ı)
(

A(µ, ı) +B2(µ, ı)K(µ, ı)
)

+
(

A(µ, ı) +B2(µ, ı)K(µ, ı)
)T

Q(ı) +G(ı)
]

x(t)

+γxT (t)Q(ı)B̃1(µ, ı)R(ı)w̃(t)

+γw̃T (t)R(ı)B̃T
1 (µ, ı)Q(ı)x(t) + γxT (t)

∑s
k=1 λıkQ(k)x(t)

−γxT (t− τ(t))G(ı)x(t − τ(t)) + γxT (t)Q(ı)Ad(µ, ı)x(t− τ(t))
+γxT (t− τ(t))AT

d (µ, ı)Q(ı)x(t).

(26)

Using the fact that for any vector x(t) and x(t− τ(t))

xT (t)Q(ı)Ad(µ, ı)x(t− τ(t)) + xT (t− τ(t))AT
d (µ, ı)Q(ı)x(t)

≤ xT (t)Q(ı)Ad(µ, ı)G
−1(ı)AT

d (µ, ı)Q(ı)x(t) + xT (t− τ(t))G(ı)x(t − τ(t)),

(26) becomes

∆̃V (x(t), ı) =

γxT (t)
[

Q(ı)
(

A(µ, ı) +B2(µ, ı)K(µ, ı)
)

+
(

A(µ, ı)+B2(µ, ı)K(µ, ı)
)T

Q(ı)

+Q(ı)Ad(µ, ı)G
−1(ı)AT

d (µ, ı)Q(ı) +G(ı) +
∑s

k=1 λıkQ(k)
]

x(t)

+γxT (t)Q(ı)B̃1(µ, ı)R(ı)w̃(t) + γw̃T (t)R(ı)B̃T
1 (µ, ı)Q(ı)x(t).

(27)

By adding and subtracting −ℵ2(ı)zT (t)z(t)+γ2w̃T (t)R(ı)w̃(t) to and from (27),
we get

∆̃V (x(t), ı) =

−ℵ2(ı)zT (t)z(t) + γ2w̃T (t)R(ı)w̃(t) + ℵ2(ı)zT (t)z(t) + γ

[

x(t)
w̃(t)

]T

×




























[

A(µ, ı) +B2(µ, ı)K(µ, ı)
]T

Q(ı)

+Q(ı)
[

A(ı) +B2(µ, ı)K(µ, ı)
]

+
∑s

k=1 λıkQ(k) +G(ı)
+Q(ı)Ad(µ, ı)G

−1(ı)AT
d (µ, ı)Q(ı)













Q(ı)B̃1(µ, ı)R(ı)

R(ı)B̃T
1 (µ, ı)Q(ı)− γR(ı)

















[

x(t)
w̃(t)

]

.

(28)
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Now, let us consider the following terms:

γ2w̃T (t)R(ı)w̃(t) = γ2









F (x(t), ı, t)H1(µ, ı)x(t)
F (x(t), ı, t)H2(µ, ı)w(t)

F (x(t), ı, t)H3(µ, ı)K(µ, ı)x(t)
w(t)









T

R(ı)×









F (x(t), ı, t)H1(µ, ı)x(t)
F (x(t), ı, t)H2(µ, ı)w(t)

F (x(t), ı, t)H3(µ, ı)K(µ, ı)x(t)
w(t)









≤ ρ2(ı)γ2

δ(ı)
xT (t)

{

HT
1 (µ, ı)H1(µ, ı) +KT (µ, ı)HT

3 (µ, ı)H3(µ, ı)K(µ, ı)
}

x(t)

+ℵ2(ı)γ2wT (t)w(t) (29)

and

ℵ2(ı)zT (t)z(t) = ℵ2(ı)xT (t)
[

C1(µ, ı) + F (x(t), ı, t)H4(µ, ı) +D12(µ, ı)K(µ, ı)+

F (x(t), ı, t)H5(µ, ı)K(µ, ı)
]T [

C1(µ, ı) + F (x(t), ı, t)H4(µ, ı)+

D12(µ, ı)K(µ, ı) + F (x(t), ı, t)H5(µ, ı)K(µ, ı)
]

x(t)

≤ 2ℵ2(ı)xT (t)
{

[C1(µ, ı) +D12(µ, ı)K(µ, ı)]
T
[C1(µ, ı) +D12(µ, ı)K(µ, ı)]

+ [F (x(t), ı, t)H4(µ, ı) + F (x(t), ı, t)H5(µ, ı)K(µ, ı)]
T

[F (x(t), ı, t)H4(µ, ı) + F (x(t), ı, t)H5(µ, ı)K(µ, ı)]
}

x(t)

≤ 2ℵ2(ı)xT (t)
{

[C1(µ, ı) +D12(µ, ı)K(µ, ı)]
T
[C1(µ, ı) +D12(µ, ı)K(µ, ı)] +

ρ2(ı) [H4(µ, ı) +H5(µ, ı)K(µ, ı)]T [H4(µ, ı) +H5(µ, ı)K(µ, ı)]
}

x(t)

(30)

where ℵ(ı) = ‖I + ρ2(ı)[HT
2 (µ, ı)H2(µ, ı)‖

1

2 . Hence,

γ2w̃T (t)R(ı)w̃(t) + ℵ2(ı)zT (t)z(t) ≤ xT (t)
[

C̃1(µ, ı) + D̃12(µ, ı)K(µ, ı)
]T

R−1(ı)×
[

C̃1(µ, ı) + D̃12(µ, ı)K(µ, ı)
]

x(t) + ℵ2(ı)γ2wT (t)w(t) (31)

where

C̃1(µ, ı) =
[

γρ(ı)HT
1 (µ, ı)

√
2ℵ(ı)ρ(ı)HT

4 (µ, ı) 0
√
2ℵ(ı)CT

1 (µ, ı)
]T

D̃12(µ, ı) =
[

0
√
2ℵ(ı)ρ(ı)HT

5 (µ, ı) γρ(ı)HT
3 (µ, ı)

√
2ℵ(ı)DT

12(µ, ı)
]T
.

Substituting (31) into (28) yields

∆̃V (x(t), ı) ≤ (32)

−ℵ2(ı)zT (t)z(t) + γ2ℵ2(ı)wT (t)w(t) + γ

[

x(t)
w̃(t)

]T

Φ(µ, ı)

[

x(t)
w̃(t)

]
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where

Φ(µ, ı) =























































[

A(µ, ı) +B2(µ, ı)K(µ, ı)
]T

Q(ı)

+Q(ı)
[

A(µ, ı) +B2(µ, ı)K(µ, ı)
]

+ 1
γ

[

C̃1(µ, ı) + D̃12(µ, ı)K(µ, ı)
]T

×
R−1(ı)

[

C̃1(µ, ı) + D̃12(µ, ı)K(µ, ı)
]

+
∑s

k=1 λıkQ(k) +G(ı)
+Q(ı)Ad(µ, ı)G

−1(ı)AT
d (µ, ı)Q(ı)

























Q(ı)B̃1(µ, ı)R(ı)

R(ı)B̃T
1 (µ, ı)Q(ı) −γR(ı)































.

(33)

Using the fact that

r
∑

i=1

r
∑

j=1

r
∑

m=1

r
∑

n=1

µiµjµmµnM
T
ij (ı)Nmn(ı) ≤

1

2

r
∑

i=1

r
∑

j=1

µiµj [M
T
ij (ı)Mij(ı)+Nij(ı)N

T
ij (ı)],

we can rewrite (3) as follows:

∆̃V (x(t), ı) ≤

−ℵ2(ı)zT (t)z(t)+γ2ℵ2(ı)wT (t)w(t)+γ
∑r

i=1

∑r
j=1 µiµj

[

x(t)
w̃(t)

]T

Φij(ı)

[

x(t)
w̃(t)

]

= −ℵ2(ı)zT (t)z(t)+γ2ℵ2(ı)wT (t)w(t) + γ
∑r

i=1 µ
2
i

[

x(t)
w̃(t)

]T

Φii(ı)

[

x(t)
w̃(t)

]

+γ
∑r

i=1

∑r
i<j µiµj

[

x(t)
w̃(t)

]T
(

Φij(ı) + Φji(ı)
)

[

x(t)
w̃(t)

]

where

Φij(ı) =











































[

Ai(ı) +B2i(ı)Kj(ı)
]T

Q(ı)

+Q(ı)
[

Ai(ı) +B2i(ı)Kj(ı)
]

+ 1
γ

[

C̃1i(ı) + D̃12i(ı)Kj(ı)
]T

R−1(ı)
[

C̃1i(ı) + D̃12i(ı)Kj(ı)
]

+
∑s

k=1 λıkQ(k) +G(ı)
+Q(ı)Adi

(ı)G−1(ı)AT
di
(ı)Q(ı)



















Q(ı)B̃1i(ı)R(ı)

R(ı)B̃T
1i (ı)Q(ı)− γR(ı)

























.

(34)
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Using (20) and pre and post multiplying (34) by

Ξ(ı) =

(

P (ı) 0
0 I

)

,

we obtain

Ξ(ı)Φij(ı)Ξ(ı) =





























P (ı)AT
i (ı) + Y T

j (ı)BT
2i(ı) +Ai(ı)P (ı) +B2i(ı)Yj(ı)

+ 1
γ

[

C̃1i(ı)P (ı) + D̃12i(ı)Yj(ı)
]T

R−1(ı)×
[

C̃1i(ı)P (ı) + D̃12i(ı)Yj(ı)
]

+
∑s

k=1 λıkP (ı)P
−1(k)P (ı)

+P (ı)G(ı)P (ı) +Adi
(ı)G−1(ı)AT

di
(ı)

|1













B̃1i(ı)R(ı)

R(ı)B̃T
1i (ı)− γR(ı)

















.(35)

Note that (35) is the Schur complement of Ωij(ı), defined in (9). Using (7), (8)
and (35), we learn that

Φii(ı) < 0 (36)

Φij(ı) + Φji(ı) < 0. (37)

Following from (3), (36) and (37), we know that

∆̃V (x(t), ı) < −ℵ2(ı)zT (t)z(t) + γ2ℵ2(ı)wT (t)w(t). (38)

Applying the operator E[
∫ Tf

0 (·)dt] to both sides of (38), we obtain

E

[

∫ Tf

0

∆̃V (x(t), ı)dt

]

< E

[

∫ Tf

0

(−ℵ2(ı)zT (t)z(t) + γ2ℵ2(ı)wT (t)w(t))dt

]

.(39)

From the Dynkin’s (1965) formula, it follows that

E

[

∫ Tf

0

∆̃V (x(t), ı)dt

]

= E[V (x(Tf ), ı(Tf ))]−E[V (x(0), ı(0))]. (40)

Substitution of (40) into (39) yields

0 < E

[

∫ Tf

0

(−ℵ2(ı)zT (t)z(t) + γ2ℵ2(ı)wT (t)w(t))dt

]

−

E[V (x(Tf ), ı(Tf ))] +E[V (x(0), ı(0))].

Using (38) and the fact that V (x(0) = 0, ı(0)) = 0 and V (x(Tf ), ı(Tf )) > 0, we
have

E

[

∫ Tf

0

{

zT (t)z(t)− γ2wT (t)w(t)
}

dt

]

< 0. (41)
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Hence, the inequality (5) holds. This completes the proof of Theorem 1. ✷

It is necessary to note that in Theorem 1, the inequalities in (7) and (8) are
not only linear with respect to matrix variables, but are also linear with respect
to the performance index gamma, which implies that the H∞ performance γmin

can be optimized by solving a convex optimization algorithm with LMI solver
toolbox.

In order to demonstrate the effectiveness and advantages of the proposed
design methodology, an illustrative example is given in the next section.

4. An illustrative example

Consider a modified nonlinear mass-spring-damper system as shown in Fig.
2. The mass-spring-damper system, i.e., mass attached to spring and damper,
is a common control experimental device frequently used in laboratory. The
dynamics of the modified nonlinear mass-spring-damper system is governed by
the following state equation; see Tanaka, Ikeda and Wang (1996) and Lee et al.
(2000):

ẋ1(t) = −[0.1125 + ∆R]x1(t)− βx1(t− τ(t)) − 0.02x2(t)− 0.67x32(t)
−0.1x32(t− τ(t)) − 0.005x2(t− τ(t)) + u(t) + 0.1w1(t)

ẋ2(t) = x1(t) + 0.1w2(t)

z(t) =





x1(t)

x2(t)





(42)

where x1(t) and x2(t) are the state vectors, which represent the velocity and
distance, respectively, u(t) is the control input, w1(t) and w2(t) are the distur-
bance inputs, z(t) is the regulated output, β is the delay parameter, ∆R is an
uncertain term, which is bounded in [0 0.1125], and the time-varying delay
τ(t) = 4 + 0.5 cos(0.9t). It is assumed that

x1(t) ∈ [−1.5 1.5] and x2(t) ∈ [−1.5 1.5].

Based on Tanaka, Ikeda and Wang (1996), the nonlinear term can be repre-
sented as

−0.67x32(t) = M1 · 0 · x2(t)− (1−M1) · 1.5075x2(t),
−0.1x32(t− τ(t)) = M1 · 0 · x2(t− τ(t)) − (1 −M1) · 0.225x2(t− τ(t)).

Upon solving the above equations, M1 is obtained as follows:

M1(x2(t)) = 1− x22(t)

2.25

M2(x2(t)) = 1−M1(x2(t)) =
x22(t)

2.25
.

Note thatM1(x2(t)) and M1(x2(t)) can be interpreted as the membership func-
tions of fuzzy sets.
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Figure 2. The mass-spring-damper system
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Figure 3. Membership functions for two fuzzy sets
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Suppose that the system could be aggregated into three modes as shown in
Table 1 and the transition probability matrix that relates the three operation

Table 1. System terminology.

Mode ı β(ı)

1 0.0120
2 0.0125
3 0.0130

modes is given as follows:

Pık =





0.67 0.17 0.16
0.30 0.47 0.23
0.26 0.10 0.64



 .

Using these two fuzzy sets, the uncertain nonlinear Markovian jump system
with time-varying delay can be represented by the following TS fuzzy model:

Plant Rule 1: IF x2(t) is M1(x2(t)) THEN

ẋ(t) = [A1(ı) + ∆A1(ı)]x(t) +Ad1
(ı)x(t − τ(t)) +B1(ı)w(t) +B2(ı)u(t),

x(0) = 0
z(t) = C1(ı)x(t),

Plant Rule 2: IF x2(t) is M2(x2(t)) THEN

ẋ(t) = [A2(ı) + ∆A2(ı)]x(t) +Ad2
(ı)x(t− τ(t)) + B1(ı)w(t) +B2(ı)u(t),

x(0) = 0,

z(t) = C1(ı)x(t)

where

A1(ı) =

[

−0.1125 −0.02
1 0

]

, A2(ı) =

[

−0.1125 −1.5275
1 0

]

,

Ad1
(ı) =

[

−β(ı) −0.005
0 0

]

, Ad2
(ı) =

[

−β(ı) −0.23
0 0

]

,

B1(ı) =

[

0.1 0
0 0.1

]

, B2(ı)

[

1
0

]

, C1(ı) =

[

1 0
0 1

]

,

∆A1(ı) = F (x(t), t)H11 (ı), ∆A2(ı) = F (x(t), t)H12 (ı), x(t) = [xT1 (t) x
T
2 (t)]

T

and w(t) = [wT
1 (t) w

T
2 (t)]

T .
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Now, by assuming that ‖F (x(t), t)‖ ≤ ρ = 1, we have

H11(ı) = H12(ı) =

[

−0.1125 0
0 0

]

.

Using the LMI optimization algorithm and Theorem 1 with γ = 1, we obtain

P (1) =

[

3.0235 −0.3160
−0.3160 0.0612

]

, W (1) =

[

1.9167 −0.2101
−0.2101 11.2435

]

,

δ(1) = 0.0807,

Y1(1) =
[

−19.2632 −0.1261
]

, Y2(1) =
[

−19.6783 −0.0566
]

,

K1(1) =
[

−14.3014 −75.8701
]

, K2(1) =
[

−14.3418 −74.9435
]

,

P (2) =

[

2.8945 −0.3304
−0.3304 0.0762

]

, W (2) =

[

1.9319 −0.2654
−0.2654 11.2661

]

,

δ(2) = 0.0784,

Y1(2) =
[

−18.2470 0.0231
]

, Y2(2) =
[

−18.6784 0.1096
]

,

K1(2) =
[

−12.4132 −53.5244
]

, K2(2) =
[

−12.4517 −52.5558
]

P (3) =

[

2.9778 −0.3218
−0.3218 0.0666

]

, W (3) =

[

1.9270 −0.2294
−0.2294 11.2507

]

,

δ(3) = 0.0801,

Y1(3) =
[

−18.8926 −0.0678
]

, Y2(3) =
[

−19.3150 0.0081
]

,

K1(3) =
[

−13.5067 −66.2681
]

, K2(3) =
[

−13.5460 −65.3188
]

.

The resulting fuzzy controller is

u(t) =

2
∑

j=1

µjKj(ı)x(t) (43)

where

µ1 =M1(x2(t)) and µ2 =M2(x2(t)).

Remark 1 The fuzzy controller (43) guarantees that the inequality (5) holds.
The system terminology is shown in Table 1, while Fig. 4 shows the result of
the switching between modes during the simulation with the initial mode 2. The
histories of the state variables, x1(t), which is the velocity, and x2(t), which
is the distance, are given in Fig. 5. The simulation results indicate that the
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trajectories of the state variables finally converge to zero appropriately. The
disturbance input signal, w(t), which was used during simulation is the rectan-
gular signal (magnitude 0.1 and frequency 1 Hz) shown in Fig. 6. The ratio
of the regulated output energy to the disturbance input noise energy obtained by
using the H∞ fuzzy controller (43) is depicted in Fig. 7. After three seconds,
the ratio of the regulated output energy to the disturbance input noise energy
tends to a constant value, which is about 0.505. So, γ =

√
0.505 = 0.711, which

is less than the prescribed value 1.

5. Conclusion

In this paper, we have developed a technique for designing a robust H∞ fuzzy
state-feedback controller for a class of nonlinear Markovian jump systems with
time-varying delay that guarantees the L2-gain of the mapping from the ex-
ogenous input noise to the regulated output to be less than some prescribed
value. In addition, solutions to the problem are given in terms of linear matrix
inequalities which make them more useful. Finally, an illustrative example is
provided to demonstrate the effectiveness and advantages of the proposed de-
sign methodology. However, failure of components can take place in many real
physical control problems, so further results on robust fuzzy dynamic system
over the nonlinear Markovian jump system with time-varying delays together
with D-stability constraints can be considered in future research work.
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