PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Feature selection and ranking method based on intuitionistic fuzzy matrix and rough sets

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (17 ; 04-07.09.2022 ; Sofia, Bulgaria)
Języki publikacji
EN
Abstrakty
EN
In this paper we propose a novel rough-fuzzy hybridization technique to feature selection and feature ranking problem. The idea is to model the local preference relation between pair of features by intuitionistic fuzzy values and search for a feature ranking that is consistent with those constraints. We apply the techniques used in group decision making where constraints are presented in form of intuitionistic fuzzy preference relation. The proposed method has been illustrated by some simple examples.
Rocznik
Tom
Strony
279--288
Opis fizyczny
Bibliogr. 25 poz., wz., wykr., tab.
Twórcy
autor
  • University of Finance and Marketing Ho Chi Minh City, Viet Nam
  • Institute of Computer Science University of Warsaw ul. Banacha 2,02-927 Warszawa, Poland
Bibliografia
  • 1. S. K. Pal and A. Skowron, Rough-Fuzzy Hybridization: A New Trend in Decision Making, 1st ed. Berlin, Heidelberg: Springer-Verlag, 1999.
  • 2. J. Buckley, “Fuzzy hierarchical analysis,” Fuzzy Sets and Systems, vol. 17, no. 3, pp. 233–247, 1985. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0165011485900909
  • 3. Y. Dong, Y. Xu, and H. Li, “On consistency measures of linguistic preference relations,” European Journal of Operational Research, vol. 189, no. 2, pp. 430–444, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0377221707005619
  • 4. S. Orlovsky, “Decision-making with a fuzzy preference relation,” Fuzzy Sets and Systems, vol. 1, no. 3, pp. 155–167, 1978. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0165011478900015
  • 5. J. Tang, F. Meng, and Y. Zhang, “Decision making with interval-valued intuitionistic fuzzy preference relations based on additive consistency analysis,” Information Sciences, vol. 467, pp. 115–134, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0020025518305565
  • 6. Z.-J. Wang and X. Tong, “Consistency analysis and group decision making based on triangular fuzzy additive reciprocal preference relations,” Information Sciences, vol. 361-362, pp. 29–47, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0020025516303000
  • 7. V. Traneva, S. Tranev, and D. Mavrov, “Interval-valued intuitionistic fuzzy decision-making method using index matrices and application in outsourcing,” in Proceedings of the 16th Conference on Computer Science and Intelligence Systems, Online, September 2-5, 2021, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, M. Paprzycki, and D. Slezak, Eds., vol. 25, 2021, pp. 251–254. [Online]. Available: https://doi.org/10.15439/2021F77
  • 8. L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353, 1965. [Online]. Available: http://www-bisc.cs.berkeley.edu/Zadeh-1965.pdf
  • 9. K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets Syst., vol. 20, no. 1, p. 87–96, aug 1986.
  • 10. H. Bustince and P. J. Burillo, “Structures on intuitionistic fuzzy relations,” Fuzzy Sets Syst., vol. 78, no. 3, pp. 293–303, 1996. [Online]. Available: https://doi.org/10.1016/0165-0114(96)84610-0
  • 11. M. Pal, S. K. Khan, and A. K. Shyamal, “Intuitionistic fuzzy matrices,” Notes on Intuitionistic fuzzy sets, vol. 8, no. 2, pp. 51–62, 2002.
  • 12. K. T. Atanassov, Intuitionistic Fuzzy Relations (IFRs). Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 147–193. [Online]. Available: https://doi.org/10.1007/978-3-642-29127-2_8
  • 13. Z. Pawlak, “Rough sets,” Int. J. Parallel Program., vol. 11, no. 5, pp. 341–356, 1982. [Online]. Available: https://doi.org/10.1007/BF01001956
  • 14. A. Skowron and C. Rauszer, “The discernibility matrices and functions in information systems,” in Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets Theory, ser. Theory and Decision Library, R. Slowinski, Ed. Springer, 1992, vol. 11, pp. 331–362. [Online]. Available: https://doi.org/10.1007/978-94-015-7975-9_21
  • 15. Z. Pawlak and A. Skowron, “Rudiments of rough sets,” Information Sciences, vol. 177, no. 1, pp. 3–27, January 2007.
  • 16. D. Slezak, “Rough sets and few-objects-many-attributes problem: The case study of analysis of gene expression data sets,” in Frontiers in the Convergence of Bioscience and Information Technologies 2007, FBIT 2007, Jeju Island, Korea, October 11-13, 2007, D. Howard and P. Rhee, Eds. IEEE Computer Society, 2007, pp. 437–442. [Online]. Available: https://doi.org/10.1109/FBIT.2007.160
  • 17. H. S. Nguyen, Approximate Boolean Reasoning: Foundations and Applications in Data Mining. Berlin, Heidelberg: Springer-Verlag, 2006, p. 334–506.
  • 18. X. Jia, L. Shang, B. Zhou, and Y. Yao, “Generalized attribute reduct in rough set theory,” Knowl. Based Syst., vol. 91, pp. 204–218, 2016. [Online]. Available: https://doi.org/10.1016/j.knosys.2015.05.017
  • 19. D. Slezak and J. Wroblewski, “Order based genetic algorithms for the search of approximate entropy reducts,” in Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, 9th International Conference, RSFDGrC 2003, Chongqing, China, May 26-29, 2003, Proceedings, ser. Lecture Notes in Computer Science, G. Wang, Q. Liu, Y. Yao, and A. Skowron, Eds., vol. 2639. Springer, 2003, pp. 308–311. [Online]. Available: https://doi.org/10.1007/3-540-39205-X_45
  • 20. Z. Xu and H. Liao, “A survey of approaches to decision making with intuitionistic fuzzy preference relations,” Know.-Based Syst., vol. 80, no. C, p. 131–142, may 2015. [Online]. Available: https://doi.org/10.1016/j.knosys.2014.12.034
  • 21. H. Torun, “Group decision making with intuitionistic fuzzy preference relations,” Knowledge-Based Systems, vol. 70, 04 2014.
  • 22. P. Ren, Z. Xu, and J. Kacprzyk, “Group decisions with intuitionistic fuzzy sets,” Handbook of Group Decision and Negotiation, pp. 977–995, 2021.
  • 23. Z. Xu and R. R. Yager, “Intuitionistic and interval-valued intutionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group,” Fuzzy Optimization and Decision Making, vol. 8, pp. 123–139, 2009.
  • 24. L. G. Nguyen and H. S. Nguyen, “On elimination of redundant attributes from decision table,” in Federated Conference on Computer Science and Information Systems - FedCSIS 2012, Wroclaw, Poland, 9-12 September 2012, Proceedings, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012, pp. 317–322. [Online]. Available: https://fedcsis.org/proceedings/2012/pliks/324.pdf
  • 25. W. N. Street, W. H. Wolberg, and O. L. Mangasarian, “Nuclear feature extraction for breast tumor diagnosis,” in Biomedical Image Processing and Biomedical Visualization, R. S. Acharya and D. B. Goldgof, Eds., vol. 1905, International Society for Optics and Photonics. SPIE, 1993, pp. 861 – 870. [Online]. Available: https://doi.org/10.1117/12.148698
Uwagi
1. Track 5: 4th International Symposium on Rough Sets: Theory and Applications
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0576aaed-b024-4eb9-b7be-189b3b413280
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.