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Abstract. Let H be any graph. We say that graph G is H-stable if G−u contains a subgraph
isomorphic to H for an arbitrary chosen u ∈ V (G). We characterize all H-stable graphs of
minimal size where H is any complete k-partite graph. Thus, we generalize the results of
Dudek and Żak regarding complete bipartite graphs.
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1. INTRODUCTION

Consider a network of sensors (processors, transmitters, etc.). We require that a given
configuration of connections between the sensors is assured even in the case of failure
of one of them. We assume that the only substantial cost is related to the connections
between the sensors. Obviously, we are interested in finding a network of minimum
cost which is fault-tolerant with respect to the given configuration.

More formally, we consider only simple graphs without loops, multiple edges and
isolated vertices. We are using the standard notation of graph theory [3] and some of
the notation introduced in [4]. Let H be any graph with set of vertices V (H) and set
of edges E(H). A graph G is said to be (H, k)- vertex stable if G contains a subgraph
isomorphic to H after removing any k of its vertices. If k = 1 we say shortly that G
is H-stable. Moreover, stab(H) denotes the minimum of sizes of all H-stable graphs.
The order and the size of H are denoted by n and m, respectively.

The exact values of stab(H) are known for some basic classes of graphs. In particular,
it is known that stab(Kn) =

(
n+1

2
)
([7]), and that stab(Cn) = n + 2d

√
n− 1e for

infinitely many n’s ([2]). The known results ([4–6]) regarding bipartite complete graphs
are presented in details in next section.

There are also more general result giving a lower bound of stab(H) for any H with
given connectivity κ and minimal degree δ ([1]). Furthermore, for any even κ = δ ≥ 2
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there are examples of graphs for which this lower bound is approximately equal to the
upper one ([1]).

The problem was also considered in the more general case, i.e. for any k ≥ 1. The
(H, k)-stable graphs of minimum size were characterized for H being C3, C4,K4,K1,m

([4]), K5 ([7]), Kn for k large enough regarding fixed n ([9]) and Kn for n large
enough regarding fixed k ([8]). Moreover, some estimations of the parameter stab(H; k)
were obtained for H being a cycle ([2]) or any graph of minimal degree δ and
connectivity κ ([10]).

In this paper we study stab(H) for H being a k-partite complete graph. One of
the substantial parts of the proof of the main result (Theorem 3.2) is to show that the
minimum size of H-stable graphs is achieved (not always exclusively) by graphs of
order |H|+ 1. Notice that if G is a H-stable graph of minimum size with no isolated
vertices then δ(G) ≥ δ(H). This is used to show some lower bounds of ‖G‖ as a
function of s, where s := |G| − |H| (Lemmas 2.3–2.5). Finally, we apply those lemmas
to show that for H being a k-partite complete graph considering s = 1 is enough to
show the lower bounds and (in almost all cases) the uniqueness of the construction of
H-stable graphs of minimum size.

2. GENERAL OBSERVATIONS

The general bounds of the value of stab(H) are the following.

Proposition 2.1 ([6]). Let H be any graph with n vertices and m edges. Then

m+ ∆(H) ≤ stab(H) ≤ min{m+ n, 2m} (2.1)

Remark 2.2. A star (Km,1) is the only graph for which the general lower bound is
equal to the upper one (2.1). Therefore, stab(Km,1) = 2m ([4]).

Let G be a H-stable graph of minimum size. Now we show some lower bounds of
‖G‖ = stab(H), dependently on the order of G.

Observe at first that there exist a copy of H, say H ′, being a subgraph of G such
that each of the vertices of V (G) \ V (H ′) have degree at least δ(H) and moreover (at
least) one of them has degree greater or equal to ∆(H). Therefore,

∑

v∈V (G)\V (H′)

degG(v) ≥ ∆(H) + (s− 1)δ(H). (2.2)

Lemma 2.3. If G is an H-stable graph of minimum size such that |G| = |H| + s,
where s ≥ ∆(H) + 1, then

stab(H) = ‖G‖ ≥ ‖H‖+ 1
2 (∆(H) + (s− 1)δ(H)) . (2.3)

Moreover, equality in (2.3) may hold only if s = ∆(H) + 1.
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Proof. Since each edge incident to vertices of V (G) \ V (H ′) can be counted twice in
(2.2), then

‖G‖ ≥ ‖H‖+ 1
2 (∆(H) + (s− 1)δ(H)) .

Lemma 2.4. Let H be a graph such that ∆(H) > δ(H) > 1. If G is an H-stable
graph of minimum size such that |G| = n+ s, where s ≤ ∆(H). Then

‖G‖ ≥





‖H‖+ ∆(H) if s = 1,
‖H‖+ ∆(H) + (s− 1)δ(H)−

(
s
2
)

if 2 ≤ s ≤ δ(H),
‖H‖+ ∆(H) + 1

2 (s− 1)(δ(H)− 1) if δ(H) + 1 ≤ s ≤ ∆(H),
(2.4)

where the eqaulity in (2.4) is possible only for s = 1, s = 2, and s = δ(H) + 1.

Proof. First we prove the correctness of the inequality (2.4). The case s = 1 is
a straightforward consequence of (2.1). Then we only have to show the cases with
s > 1.

If 2 ≤ s ≤ δ(H)+1, then at most
(

s
2
)
edges incident to the vertices of V (G)\V (H ′)

are counted twice in (2.2).
If δ(H)+1 ≤ s ≤ ∆(H), then there exists a copy of H, say H ′, being a subgraph of

G such that there exists vertex u ∈ V (G) \ V (H ′) of degree at least ∆(G). Notice that
there are at least 1

2 (s−1)(δ(H)−1) edges incident with the vertices of V (G−u)\V (H ′).
Summing up those two we get ‖G‖ ≥ ‖H‖+ ∆(H) + 1

2 (s− 1)(δ(H)− 1), as desired.
The fact that the expressions of the right-side part of (2.4) are increasing (with

respect to the domain) functions of variable s completes the proof.

Lemma 2.5. Let H be a d-regular graph such that d > 1. If G is a H-stable graph of
minimum size such that s := |G| − |H| ≤ d, then

‖G‖ = stab(H) ≥
{
‖H‖+ |H|+d+1

2 if s = 1,
‖H‖+ sd−

(
s
2
)

+ 1 if 2 ≤ s ≤ d. (2.5)

Proof. Consider the case s = 1. Suppose for the contrary that

‖G‖ ≤ ‖H‖+ |H|+ d

2 = (|H|+ 1)(d+ 1)− 1
2 .

Therefore, there exists a vertex y ∈ V (G) such that degG(y) ≤ d. Consider now G− y′,
where y′ a neighbour of y. Observe that the degree of y in G− y′ is smaller than d,
hence y does not belong to any copy of H in G− y′. Since |G− y′| = |H|, it can be
easily seen that G− y′ does not contain any subgraph of H.

Now consider the case 2 ≤ s ≤ d. Suppose for the contrary that ‖G‖ = ‖H‖+ sd−(
s
2
)
. Let H0 be any copy of H being a subgraph of G. Then all vertices of V (G)\V (H0)

are adjacent to each other and their degree in G equals d. Moreover, each of s vertices
of V (G) \ V (H0) has a neighbour in V (H0) (since s ≤ d). Let u ∈ V (H0) ∩ N(x),
where x is some vertex of V (G) \ V (H0). We are going to show that at least s vertices
of V (G− u) are useless, i.e. cannot be contained in any copy of H, which ends the
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proof since |G−u| = |H|+s−1. To this aim observe that the vertex x ∈ N(u)\V (H0)
is not contained in any copy of H in G−u, because its degree in G−u is smaller than
d. Consequently, all the remaining vertices of V (G) \ V (H0) cannot be in any copy
of H in G − u. Indeed, their degree ignoring (already useless) neighbour x is lower
than d. Therefore, we show, as required, that s = |G| − |H| vertices of V (G− u) are
useless which completes the proof.

Remark 2.6. It can be shown that the inequalities (2.3), (2.4) and (2.5) are tight.

3. COMPLETE k-PARTITE GRAPHS

The Kn,n-stable and Kn,n+1-stable graphs of minimum size were characterized by
Dudek and Zwonek ([5]). This results were generalized by Dudek and Żak ([6]) to the
case of any complete bipartite graph.
Theorem 3.1 ([6]). Let p ≥ q ≥ 2. Then for H = Kp,q

stab(H) =
{
pq + p for p− q = 1,
pq + p+ q for p− q 6= 1.

(3.1)

Moreover, all Kp,q-stable graphs of minimum size were characterized ([6]). Namely,
if p = q + 1 > 2, then Kp,p is the only Kp,q-stable graph of minimum size. Otherwise,
if p ≥ 4, q ≥ 2 and p ≥ q, then the only Kp,q-stable graph of minimum size are
G1 = Kp,q ∗K1 and G2 = Kp+1,q+1 − e, where e is any edge of Kp+1,q+1.

Keeping the assumption that H = Kp,q with p ≥ q ≥ 2 we can formulate (3.1) in
the following way:

stab(H) =
{
‖H‖+ ∆(H) for p− q = 1,
‖H‖+ |H| for p− q 6= 1.

Observe that stab(Kp,q) achieves exactly the lower or the upper bound of (2.1) and
no in-between value is possible. This property holds also in the general case of any
complete k-partite graphs as follows.
Theorem 3.2. Let H be a complete k-partite graph H = Kn1n2...nk

with k ≥ 2 and
n1 ≥ n2 ≥ . . . ≥ nk such that H 6= Km,1. Then

stab(H) =
{
‖H‖+ ∆(H) for n1 = n2 = . . . = nk−1 = nk + 1,
‖H‖+ |H| otherwise.

Proof. Since the theorem is proved for k = 2 ([6]), we focus on the case k ≥ 3.
I. Let n1 = n2 = . . . = nk−1 = nk + 1. It can be easily verified that G = Kn1n1...n1

is H-stable and ‖G‖ = ‖H‖ + ∆(H). By (2.1) we know that there is no H-stable
graph of smaller size which completes the proof of this case.

II. Now consider any k-partite complete graph H different from that defined in I.
Let G be an H-stable graph. Let n = |H| and m = ‖H‖. Due to Lemmas 2.3-2.5 and
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the facts that δ(H) = n− n1 and ∆(H) = n− nk, we can observe that if |G| ≥ n+ 2
then ‖G‖ ≥ ‖H‖+ n. Therefore, we assume that |G| = n+ 1.

Now let us transform our problem to the equivalent one. Since we are assuming
that |G−x| = n then, in fact, V (G−x) = V (H ′) for any x ∈ V (G), where H ′ ⊂ G−x
is isomorphic to H. Therefore,

(G− x ⊃ H ′)⇔ (H ′ ⊃ G− x).

Now we are interested in maximizing the size of G such that G− x is isomorphic with
some subgraph of H for arbitrary chosen x.

H is a union of k cliques (of orders n1, n2, . . . , nk), hence for any x ∈ V (G) graph
G− x has at least k components of connectivity. Since each connected graph of order
greater than one contains a vertex which can be removed without loosing connectivity,
we conclude that graph G also consists of at least k components of connectivity (of
orders, say, r1, . . . , rk+t such that r1 ≥ . . . ≥ rk+t with t ≥ 0 ).

Of course
n+ 1 = n1 + . . .+ nk + 1 = r1 + . . . rk+t. (3.2)

Consider multiset Rj := {r1, . . . , rj−1, rj−1, rj+1, . . . , rk+t}. For each j∈{1, . . . , k + t}
there exists a partition of Rj into k multisubsets R1

j , . . . , R
k
j such that the sum of

elements of Ri
j is equal to ni for all i = 1, . . . , k.

First consider the case that G consists of exactly k components of connectivity. In
that case the partition of Rj into k subsets is unique - each subset consists just of one
element. Then the equality r1 = . . . = rk must be satisfied. Indeed, if rj 6= rl, then
Rj 6= Rl and at least one of Rj , Rl does not correspond to a given sequence of orders
of components of H. The equality of all ri’s implies that n1 = . . . = nk−1 = nk + 1,
but this is exactly the case already considered in I, which is excluded in II.

Let us move to the case s > 0. Obviously

‖G‖ ≤
(
r1
2

)
+ . . .+

(
rk+t

2

)
. (3.3)

Let x belong to the (k + t)th component of G. It is clear that for each i = 1, . . . , k
no more than

(
ni

2
)
edges of G− x can be included in a component of H of order ni.

Therefore,

‖G− x‖ ≤
(
n1
2

)
+ . . .+

(
nk

2

)
. (3.4)

(i) If each component of G is a clique, t = 1, rk+1 = 1 and ri = ni for i = 1, . . . , k,
we obtain

‖G‖ = ‖G− x‖ =
(
n1
2

)
+ . . .+

(
nk

2

)
,

and, consequently,

‖G‖ =
(
n+ 1

2

)
− ‖G‖ = n+

(
n

2

)
−
(
n1
2

)
− . . .−

(
nk

2

)
= m+ n.
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The graph G constructed in that way is isomorphic with K1 ∗H which is H-stable
(see [6]).

(ii) If (i) is not satisfied then some Rl
k+t consists of two (or more) elements.

Consequently, in l-th component of H two (or more) disjoint components of G− x
are included, leaving unused edges of H between them. The number of that unused
edges is minimal if there are only two disjoint components being cliques. Assuming
that the orders of that disjoint cliques are, say a and b, then ab unused edges are in
H. Since the two smallest cliques in G− x are of orders not less than 1 and rk+t, we
obtain that

‖G− x‖ ≤
(
n1
2

)
+ . . .+

(
nk

2

)
− rk+t,

and, consequently,

‖G‖ = ‖G− x‖+ rk+t − 1 ≤
(
n1
2

)
+ . . .+

(
nk

2

)
− 1

which is less than in case (i). This shows that in case II there is no H-stable graph G
containing less than m+ n edges which ends the proof.

Theorem 3.3. Let H be a complete k-partite graph H = Kn1n2...nk
with k ≥ 3 and

n1 ≥ n2 ≥ . . . ≥ nk such that H 6= Km,1 and H 6= K3. Then the only H-stable graph
of minimum size is Kn1,...,n1 if n1 = n2 = . . . = nk−1 = nk + 1 and H ∗K1 otherwise.
Proof. Case I: n1 = n2 = . . . = nk−1 = nk + 1. Let G be an H-stable graph of
minimum size, i.e. ‖G‖ = m+ ∆(H). If |G| > n+ 1, then, as it was already showed in
the proof of Theorem 3.2, ‖G‖ ≥ m+ n > m+ ∆(H) – a contradiction. Therefore, we
assume that |G| = n+ 1. It is easy to observe that δ(G) = ∆(G) = ∆(H). Indeed, if
δ(G) ≤ ∆(H)− 1 = δ(H), then removing some neighbour of a vertex of degree δ(G)
we obtain a graph of minimum degree less than δ(H), which cannot contain H as a
subgraph. On the other hand, if ∆(G) > ∆(H), then

‖G‖ > 1
2(n+ 1)∆(H) = m+ ∆(H),

a contradiction. Therefore, ‖G− u‖ = m and, in consequence, G− u is isomorphic to
H for arbitrary chosen vertex u. It is clear that the only graph satisfying this property
is the complete k-partite graph with all components of partition of order n1.

Case II: (Case I not satisfied). Let G be a H-stable graph of minimum size, i.e.
‖G‖ = m+ n.

1. If |G| = n+ 1, then, accordingly to the proof of Theorem 3.2, G = H ∗K1 is
the only H-stable graph of minimum size.

2. Suppose for the contrary that |G| = n+ s with s > 1. Due to Lemmas 2.3–2.5
we can observe that there may exists a H-stable graph of size m+ n only if k = 3 and
n2 = n3 = 1 and if one of the following cases is satisfied:
a) s = 2,
b) s = 3 with ∆(H) ≥ 3,
c) s = 3 with ∆(H) = 2.
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We show that, in fact, even in these cases there is no H-stable graph of size m+ n
and order greater than n+ 1. First, observe that since k = 3 and n2 = n3 = 1 then
δ(H) = 2 and ∆(H) = n − 1. If ∆(H) = δ(H) = 2, then, in fact, H = K3 which is
excluded in the theorem’s assumptions. (It is easy to observe that the only K3-stable
graph of minimum size are K4 and 2K3.) Therefore, it is enough to focus only on the
cases a) and b) assuming that ∆(H) ≥ 3.

Case a) If ∆(G) ≥ ∆(H) + 1 = n, then ‖G− ū‖ ≤ (m+ n)− n, where degG(ū) =
∆(G). Since G− ū contains no more than m edges incident with n+ 1 non-isolated
vertices, it cannot contain H as a subgraph.

Consider now the case ∆(G) = ∆(H) = n − 1. Observe that since n2 = n3 = 1,
then there exists vertices u and u′ of degree ∆(H) in H. Let x be a vertex of degree
at least ∆(H) in G. Then there is a copy of H such that V (H) = V (G) \ {x, y},
where y is some vertex of degree at least two in G. Notice, that ux, u′x, uy, u′y 6∈ E(G)
(otherwise ∆(G) > ∆(H)). Then x is connected with all vertices of except u and u′,
hence each vertex of G except y is of degree at least three. Consequently, δG−u ≥ 2.
Finally,

‖G‖ ≥ ‖H‖+ ∆(H) + 2 = m+ n+ 1 > m+ n,

a contradiction.
Case b) There exists such a copy of H in G that V (G) = V (H) ∪ {x, y, z}, where

degG(x) ≥ 2, degG(y) ≥ 2 and degG(z) ≥ ∆(H) = n− 1. If xy 6∈ E(G) then

‖G‖ ≥ m+ 2 + 2 + n− 1− 2 > m+ n,

a contradiction.
Therefore, assume that xy ∈ E(G). Since G is a H-stable graph of minimum size

then xy is included in some copy of H, say H ′′, being a subgraph of G. In that case x
and y are not in the same component of a partition of H ′′, hence at least one of the
vertices x, y has degree at least ∆(H) ≥ 3. Therefore,

‖G‖ ≥ m+ 2(n− 1) + 2−
(

3
2

)
> m+ n,

a contradiction.
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