PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Confined phase envelope of gas-condensate systems in shale rocks

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Krzywa nasycenia układów gazowo-kondensatowych w nanoporowych skałach
Języki publikacji
EN
Abstrakty
EN
Natural gas from shales (NGS) and from tight rocks are one of the most important fossil energy resource in this and next decade. Significant increase in gas consumption, in all world regions, will be marked in the energy sector. The exploration of unconventional natural gas & oil reservoirs has been discussed recently in many conferences. This paper describes the complex phenomena related to the impact of adsorption and capillary condensation of gas-condensate systems in nanopores. New two phase saturation model and new algorithm for search capillary condensation area is discussed. The algorithm is based on the Modified Tangent Plane Criterion for Capillary Condensation (MTPCCC) is presented. The examples of shift of phase envelopes are presented for selected composition of gas-condensate systems.
PL
Gaz ziemny z łupków (NGS) oraz z ze złóż niskoprzepuszczalnych (typu ‘tight’) staje się jednym z najważniejszych zasobów paliw kopalnych, w tym i następnym dziesięcioleciu. Znaczący wzrost zużycia gazu we wszystkich regionach świata zaznacza się głównie w sektorze energetycznym. Rozpoznawanie niekonwencjonalnych złóż gazu ziemnego i ropy naftowej w ostatnim czasie jest omawiane w wielu konferencjach. Niniejszy artykuł opisuje złożone zjawiska związane z wpływem adsorpcji i kapilarnej kondensacji w nanoporach w złożach gazowo-kondensatowych. Pokazano nowy dwufazowy model równowagowy dwufazowy i nowy algorytm wyznaczania krzywej nasycenia w obszarze kondensacji kapilarnej. Algorytm bazuje na kryterium zmodyfikowanym płaszczyzny stycznej dla kapilarnej kondensacji (MTPCCC). Przykłady zmiany krzywych nasycenia są przedstawiane w wybranym składzie systemów gazowo- kondensatowych.
Rocznik
Strony
1005--1022
Opis fizyczny
Bibliogr. 73 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science & Technology, Drilling & Oil-Gas Faculty, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science & Technology, Drilling & Oil-Gas Faculty, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Adamson A.W., 1990. Physical Chemistry of Surfaces. J. Wiley & Sons Inc.
  • [2] Ahmed T., 1989. Hydrocarbon Phase Behavior (Contributions in Petroleum Geology and Engineering). Gulf Publishing Co.
  • [3] Altman R.M. et al., 2014. Understanding Mechanisms for Liquid Dropout from Horizontal Shale Gas Condensate Wells. Society of Petroleum Engineers. doi:10.2118/170983-MS.
  • [4] Ambrose R.J., 2011. Micro-Structure of Gas Shales and Its Effects on Gas Storage and Production Performance. Master’s Thesis, University of Oklahoma, Norman, OK.
  • [5] Brusilovsky A.I., 1990. Mathematical Simulation of Phase Behavior of Natural Multicomponent Systems at High Pressures with an Equation of State. SPE 20180.
  • [6] Campos M.D., 2010. Uncertainties in Shale Gas-_in-Place Calculations: Molecular Simulation Approach. Ph.D. Dissertation, University of Oklahoma, Norman, OK, 2011.
  • [7] Campos M.D., Akkutlu I.Y., Sigal R.F., 2009. A Molecular Dynamics Study on Natural Gas Solubility Enhancement In Water Confined to Small Pores, Paper SPE124491-MS.
  • [8] Cao Minh et al., 2012. 2D-NMR Applications in Unconventional Reservoirs. SPE 161578.
  • [9] Clarkson C.R., Haghshenas B., 2012. Modeling of Supercritical Fluid Adsorption on Organic-Rich Shales and Coal. SPE 164532.
  • [10] Clarkson C.R., Wood J.M., Burgis S.E., Aquino S.D., Freeman M., Birss V., 2012. Nanopore Structure Analysis and Permeability Predictions for a Tight Gas/Shale Reservoir Using Low-Pressure Adsorption and Mercury Intrusion Techniques. SPE 155537.
  • [11] Crowe C.M., Nishio M., 1975. Convergence Promotion in the Simulation of Chemical Process – the General Dominant Eigenvalue Method. AIChE J.,Vol. 21, No. 3, 528-533.
  • [12] Danesh A.S., Dandekar A.Y., Todal A.C., Sarkar R., 1991. A Modified Scaling Law andParachor Approach for Improved Prediction of Interfacial Tension of Gas-Condensate System. SPE 2270.
  • [13] Defay R., Prigogine I., 1966. Surface Tension and Adsorption. Longmans, London. Fig. 10. Compressibility factor of pure methane in bulk (Dp > 100 nm) and confined conditions (Dp = 2,5,10 nm) at constant temperature 85°C (equivalent to 2700 m depth at geothermal gradient 3.3°/100 m) using TsaiChen PR EOS with modified critical parameters Unauthenticated Download Date | 12/29/14 10:36 AM 1020.
  • [14] Derouane E.G., 2007. On the physical state of molecules in microporous solids. Microporous and Mesoporous Materials. 104. 46-51.
  • [15] Devegowda D., Sapmanee K., Civan F., Sigal R.F., 2012. Phase Behavior of Gas Condensates in Shales Due to Pore Proximity Effects: Implications for Transport, Reserves and Well Productivity. Society of Petroleum Engineers. doi:10.2118/160099-MS.
  • [16] Dhanapal K. et al., 2014. Phase Behavior and Storage in Organic Shale Nanopores: Modeling of Multicomponent Hydrocarbons in Connected Pore Systems and Implications for Fluids-in-place Estimates in Shale Oil and Gas Reservoirs. SPE-169008-MS.
  • [17] Didar B.R., Akkutlu I.Y., 2013. Pore-Size Dependence of Fluid Phase Behavior and Properties in Organic-Rich Shale Reservoirs. SPE 164099.
  • [18] Elamin A. et al., 2013. Simulation of Multicomponent Gas Flow and Condensation in Marcellus Shale Reservoir. SPE 159869.
  • [19] Everett D.H., 1972. IUPAC manual of symbols and terminology for physicochemical quantities and units. App. II, Part I. Pure Appl. Chem. Vol. 21, p. 584-594.
  • [20] Fanchi J., 1990. Calculation of Parachors for Compositional Simulation: An Updated. SPE Res. Eng., p. 43 SPE 19453.
  • [21] Firincioglu T. et. al. 2012. Thermodynamics of Multiphase Flow in Unconventional Liquids rich Reservoirs. SPE 123455.
  • [22] Guo P. et al., 1996. A Theoretical Study of the Effect of Porous Media on the Dew Point Pressure of a Gas Condensate. SPE 25644.
  • [23] Hamada Y., Koga K., Tanaka H., 2007. Phase equilibria and interfacial tension of fluids confined in narrow pores. J. Chem. Phys., 127 (8): 084908-1-084908-9.
  • [24] Hartman R.C. et al., 2011. Shale Gas-in-Place Calculations Part 2 – Multicomponent Gas Adsorption Effects. SPE 144097-MS.
  • [25] Honarpour et al., 2012. Characterization of Critical Fluid, Rock, and Rock-Fluid Properties – Impact on Reservoir Performance of Liquid-Rich Shales. SPE 158042.
  • [26] IEA, 2012. World Energy Outlook: Golden Rules in the Golden Age of Natural Gas. Report IEA.
  • [27] IEA, 2011. World Energy Outlook 2011: Golden Age of Natural Gas? Report IEA.
  • [28] Jhaveri B.S., Youngren G.K., 1988. Three Parameter Modification of the Peng Robinson Equation of State to Improve Volumetric Predictions. SPE Res. Eng., (Aug. 1988), p. 1033.
  • [29] Kaliski M., Nagy S., Siemek J., Sikora A., Szurlej A., 2012. Unconventional natural gas-USA, the European Union, Poland. Archiwum Energetyki, 42, 109-122 (In Polish).
  • [30] Kang S., Fathi E., Ambrose R.J., Akkutlu I.Y., Sigal R.F., 2011. Carbon Dioxide Storage Capacity of Organicrich Shales. SPE Journal, Vol. 16 (4), 842-855.
  • [31] Kang S.M., 2011. Carbon Dioxide Storage Capacity of Barnett Shale. MSc, Oklahoma Univ.
  • [32] Klimkowski Ł., Nagy S., 2014. Key Factors in Shale Gas Modeling and Simulation. Arch. Min. Sci., Vol. 59, No 4, p. 987-1004.
  • [33] Lee S-T., 1999. Capillary-Gravity Equilibria for Hydrocarbon Fluids in Porous Media. SPE 19650.
  • [34] Lin H., Duan Y-Y., 2005. Empirical correction to the Peng-Robinson equation of state for the saturated region. Fluid Phase Equilibria, 233 (2005) 194-203.
  • [35] Ma Y., Jamili A., 2014. Modeling the Effects of Porous Media in Dry Gas and Liquid Rich Shale on Phase Behavior. Society of Petroleum Engineers. doi:10.2118/169128-MS.
  • [36] Ma Y., Jin L., Jamili A., 2013. Modifying van der Waals Equation of State to Consider Influence of Confinement on Phase Behavior. Society of Petroleum Engineers. doi:10.2118/166476-MS.
  • [37] Michelsen M.L., 1982a. The Isothermal Flash Problem I. Stability analysis. Fluid Phase Equilibria Vol. 8, p. 1-19.
  • [38] Michelsen M.L., 1982b. The Isothermal Flash Problem I. Phase Split Calculation. Fluid Phase Equilibria Vol. 8, 21-40.
  • [39] MIT, 2011. Future of Natural Gas, An Interdisciplinary MIT Study. Massachusetts Inst. of Tech., Boston.
  • [40] Nagy S., 1992. Isenthalpic throttling effect in multiphase and multicomponent systems. Archiwum Termodynamiki, Vol. 12, No. 1-4, p.116-128.
  • [41] Nagy S., 2002. Capillary adsorption effects in gas condensate systems in tight rocks. Arch. Min. Sci., Vol. 47, No 2, p. 205-253 Unauthenticated Download Date | 12/29/14 10:36 AM 1021.
  • [42] Nagy S., 2003. Capillary adsorption effects in gas condensate systems in tight rocks – Vertical variation of hydrocarbon composition. Arch. Min. Sci., Vol. 48, No 3, p. 355-402.
  • [43] Nagy S., Siemek J., 2011. Shale Gas in Europe: the state of the technology - challenges opportunities. Arch. Min. Sci., Vol. 56, No. 4.
  • [44] Nagy S., Siemek J., 2013. Phase envelope of gas condensate systems in nanopores. [In:] ICEE/ICIT-2013 conference: joint International Conference on Engineering Education and Research and International Conference Information Technology: 8-12 December Cape Town, South Africa. – Cape Town: Cape Peninsula University of Technology, p. 111-119.
  • [45] Orangi A. et al., 2011. Unconventional Shale Oil and Gas-Condensate Reservoir Production, Impact of Rock, Fluid and Hydraulic Fractures. SPE 140536.
  • [46] Ortiz V., Lopez-Á lvarez Y.M., Lopez G.E., 2005. Phase diagrams and capillarity condensation of methane confined In single- and multi-layer nanotubes. Molecular Physics, 103 (19): 2587-2592.
  • [47] Pang J. et al., 2012. Impact of Porous Media on Saturation Pressures of Gas and Oil in Tight Reservoirs. SPE 161143.
  • [48] Patel N.C., Teja A.S., 1982. A new cubic equation of state for fluids and fluids mixtures. Chem. Eng. Sci., Vol. 37, p. 463-473.
  • [49] Pedersen K.S., Fredenslund A., Thomassen P., 1989. Properties of Oils and Natural Gases. Gulf Publishing Co., Houston, Tx.
  • [50] Peng D.-Y., Robinson D.B., 1976. A New Two-Constant Equation of State. Ind. Eng. Chem. Fund., 15, No. 1, 59-64.
  • [51] PGI, 2012. Assessment of shale gas and shale oil resources of the Lower Paleozoic Baltic-Podlasie-Lublin Basin In Poland. Report, Warsaw 2012.
  • [52] Ping S. et al., 1996. A Theoretical Study of the Effect of Porous Media on the Dew Point Pressure of a Gas Condensate. SPE 35644.
  • [53] Poprawa P., 2010. Poszukiwanie złóż gazu ziemnego w łupkach (shale gas) w Polsce. Wiadomości Naftowe I Gazownicze, 2/2010 (In Polish).
  • [54] Reid R.C., Prausnitz I.M., Sherwood T., 1977. The Properties of Gases and Liquids. third edition, McGraw-Hill Book Co. Inc., New York City.
  • [55] Rubin B., 2010. Accurate simulation of non Darcy flow in stimulated fractured shale reservoirs. SPE paper 132093.
  • [56] Sadyk K., Zade E.S., 1963. Determination of the Beginning of Condensation in the Presence of Porous Media. Neft i Gaz.
  • [57]Sadyk K., Zade E.S., 1968. A Study of the Process at Equilibrium Rate Attainment During Condensate System. Neft i Gaz.
  • [58] Shapiro A.A., Stanby E.H., 1996. Effect of Capillary Forces & Adsorption on Reserves Distributions. SPE 36922.
  • [59] Siemek J., Nagy S., 2012. Energy carriers use in the world: natural gas – conventional and unconventional gas resources, Arch. Min. Sci., Vol. 57, No 2, p. 283-312.
  • [60] Siemek J., Nagy S., Siemek P., 2013. Challenges for sustainable development: the case of shale gas exploitation In Poland. Problems of Sustainable Development, vol. 8, no. 1, p. 91-104.
  • [61] Siemek J., Rychlicki S., Kolenda Z., Stryczek S., Nagy S., 2009. Gaz ziemny i ropa naftowa–Polska i Unia Europejska, potrzeby, własne wydobycie i dostawy. Zarys stanu i perspektywy energetyki polskiej. Studium AGH, AGH Kraków (In Polish).
  • [62] Sigmund P.M. et al., 1973. Retrograde Condensation in Porous Media. SPE 3476.
  • [63] Singh S.K. at al., 2009. Vapor-Liquid Phase Coexistence, Critical Properties, and Surface Tension of Confined Alkanes. J. of Phys. Chem. C, 113(17).
  • [64] Smith L.R., Yarborough L., 1968. Equilibrium Revaporization of Retrograde Condensate by Dry Gas Injection. SPEJ (March 1968), p. 87-94.
  • [65] Stryjek R., Vera J.H., 1986. PRSV: an improved Peng-Robinson equation of state for pure compounds and mixtures. Can. J. Chem. Eng., Vol. 64, p. 323-333.
  • [66] Tindy R., Raynal M., , 1966. Are Test-Cell Saturation Pressures Accurate Enough? Oil and Gas Journal, 64(126).
  • [67] Travalloni L., Castierb M., Tavaresa F.W., Sandler S.I., 2010. Critical behavior of pure confined fluids from an extension of the van der Waals equation of state. Journal of Supercritical Fluids, 55 (2): 455-461.
  • [68] Trebin F.A., Zadora, 1968. Experimental Study of the Effect of a Porous Media on Phase Change in Gas Condensate System. Neft’ i Gaz, 8(37). Unauthenticated Download Date | 12/29/14 10:36 AM 1022.
  • [69] Warowny W., Nagy S., Śniatała K., Roszak R., Szołkowski S., 2004. Wyznaczanie punktu rosy węglowodorów w gazie ziemnym. Gaz, Woda i Technika Sanitarna, 114-122 [In Polish].
  • [70] Whitson C., Sunjerga S., 2012. PVT in Liquid-Rich Shale Reservoirs. SPE 155499.
  • [71] Whitson C.H., Brule M R., 2000. Phase Behavior. SPE Monograph Series. Vol. 20.
  • [72] Zhang Y., Civan F., Devegowda D., Jamili A., Sigal R. F., 2013. Critical Evaluation of Equations of State for Multicomponent Hydrocarbon Fluids in Organic Rich Shale Reservoirs. Society of Petroleum Engineers. doi:10.1190/URTEC2013-182.
  • [73] Zuo Y., Stenby E.H., 1997. Corresponding-States and Parachor Models for the Calculation of Interfacial Tensions. Can. J. Chem. Eng., 75, 1130-1137.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-056c5c16-f397-4bfd-90d6-1f0c9a168343
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.