PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applying additive manufacturing technologies to a supply chain: A Petri net-based decision model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, applying additive manufacturing (AM) technologies into a supply chain (SC) permits realization of the so-called “demand chains” and transformation of conventional production to mass customization. However, integration of AM technologies within an SC indicates the need to support managers’ decision about such an investment. Therefore, this work develops a Petri net-based decision support model that determines the changes in an SC by adopting AM and improving customer-perceived value (CPV), based on a case study regarding a real-life metal production process. The basis for building such a model is the supply chain operation reference model (SCOR), focusing on CPV, due to the need for redesigning the SC starting from the customer instead of the company. To achieve the research objective, this work introduces a novel verification methodology for a Petri net-based decision model. The research results show that applying the developed model, which is based on the selected characteristics of the production process and parameters describing the potential integration of AM within the SC, allows managers to perceive a scenario in the form of graphical models about positive or negative impacts of introducing AM into the SC. The managers find the Petri net-based decision support model presented in this paper a beneficial tool to support the implementation of changes in an SC and show the potential increase in customer satisfaction thanks to the integration of AM within an SC.
Rocznik
Strony
513--525
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Institute of Mechanical Engineering, University of Zielona Góra, Szafrana 4, 65-516 Zielona Góra, Poland
  • Institute of Control and Computation Engineering, University of Zielona Góra, Szafrana 2, 65-516 Zielona Góra, Poland
autor
  • Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Colton Hall, Suite 200, Newark, NJ 07102, USA
  • State Archives in Zielona Góra, Al. Wojska Polskiego 67A, 65-762 Zielona Góra, Poland
  • Institute of Control and Computation Engineering, University of Zielona Góra, Szafrana 2, 65-516 Zielona Góra, Poland
Bibliografia
  • [1] Akbari, M.M. (2023). Data-driven review of additive manufacturing on supply chains regionalization, key research themes and future directions, Computers & Industrial Engineering 184: 109600.
  • [2] Arbabian, M.E. and Wagner, M.R. (2020). The impact of 3D printing on manufacturer-retailer supply chains, European Journal of Operational Research 285(2): 538-552.
  • [3] Bakhtari, A.R., Kumar, V., Waris, M.M., Sanin, C. and Szczerbicki, E. (2020). Industry 4.0 implementation challenges in manufacturing industries: An interpretive structural modelling approach, Procedia Computer Science 176: 2384-2393.
  • [4] BCI (2019). Supply chain resilience: 10 Year trend analysis, Business Continuity Institute, Zurich, https://www.thebci.org/static/uploaded/6bd728bd-bf0e-4eb7-b15fa67164eb9484.pdf.
  • [5] Best, E., Devillers, R. and Koutny, M. (2001). Petri Net Algebra, Springer, Berlin/Heidelberg.
  • [6] Brazález, E.H., Díaz, Macià, G.V. and Valero, Boubeta-Puig, J. (2022). PITS: An intelligent transportation system in pandemic times, Engineering Applications of Artificial Intelligence 114: 105154.
  • [7] Bulitko, V. and Wilkins, D.C. (2003). Qualitative simulation of temporal concurrent processes using time interval Petri Nets, Artificial Intelligence 144(1-2): 95-124.
  • [8] Campbell, I., Bourell, D. and Gibson, I. (2022). Additive manufacturing: Rapid prototyping comes of age, Rapid Prototyping Journal 18(4): 255-258.
  • [9] Chen, Z.-S., Zhu, Z., Wang, Z.-J. and Tsang, Y. (2023). Fairness-aware large-scale collective opinion generation paradigm: A case study of evaluating blockchain adoption barriers in medical supply chain, Information Sciences 635: 257-278.
  • [10] Coronato, A. (2018). Engineering High Quality Medical Software: Regulations, Standards, Methodologies and Tools for Certification, IET, Stevenage, Chapter 8, pp. 95-105.
  • [11] David, R. and Alla, H. (2010). Bases of Petri nets, in R. David and H. Alla (Eds), Discrete, Continuous, and Hybrid Petri Nets, Springer, Heidelberg, pp. 1-20.
  • [12] Dingle, N.J., Knottenbelt, W.J. and Suto, T. (2009). PIPE2: A tool for the performance evaluation of generalised stochastic Petri nets, SIGMETRICS Performance Evaluation Review 36(4): 34-39.
  • [13] Dircksen, M. and Feldmann, C. (2020). Holistic evaluation of the impacts of additive manufacturing on sustainability, distribution costs, and time in global supply chains, Transportation Research Procedia 48: 2140-2165.
  • [14] Ekren, B.Y., Stylos, N., Zwiegelaar, J., Turhanlar, E.E. and Kumar, V. (2023). Additive manufacturing integration in E-commerce supply chain network to improve resilience and competitiveness, Simulation Modelling Practice and Theory 122: 102676.
  • [15] Fierro, L.H., Cano, R.E. and García, J.I. (2020). Modelling of a multi-agent supply chain management system using colored Petri nets, Procedia Manufacturing 42: 228-295.
  • [16] Girault, C. and Valk, R. (2003). Petri Nets for Systems Engineering: A Guide to Modeling, Verification, and Applications, Springer, Berlin/Heidelberg.
  • [17] Gomes, L. (2005). On conflict resolution in Petri Nets models through model structuring and composition, INDIN’05: 2005 3rd IEEE International Conference on Industrial Informatics, Perth, Australia, pp. 489-494.
  • [18] Gomes, L., Barros, J.P., Costa, A. and Nunes, R. (2007). The input-output place-transition Petri net class and associated tools, 2007 5th IEEE International Conference on Industrial Informatics, Vienna, Austria, pp. 509-514.
  • [19] Guo, Y.-Z. and Zeng, J.-C. (2011). Decision-making and controlling for products collaborative design implement process based on fuzzy Petri net, Procedia Engineering 15: 3032-3040.
  • [20] Huang, B. and Zhou, M. (2020). Supervisory Control and Scheduling of Resource Allocation Systems: Reachability Graph Perspective, IEEE Press/Wiley, Hoboken.
  • [21] Jimo, A., Braziotis, C., Rogers, H. and Pawar, K. (2019). Traditional vs. additive manufacturing supply chain configurations: A comparative case study, Procedia Manufacturing 39: 765-774.
  • [22] Jimo, A., Braziotis, C., Rogers, H. and Pawar, K. (2022). Additive manufacturing: A framework for supply chain configuration, International Journal of Production Economics 253: 108592.
  • [23] Katsaliaki, K., Galetsi, P. and Kumar, S. (2022). Supply chain disruptions and resilience: A major review and future research agenda, Annals of Operations Research 319: 965-1002.
  • [24] Khajavi, S., Partanen, J. and Holmström, J. (2014). Additive manufacturing in the spare parts supply chain, Computers in Industry 65(1): 50-63.
  • [25] Kunovjanek, M., Knofius, N. and Reiner, G. (2020). Additive manufacturing and supply chains - A systematic review, Production Planning & Control 33(13): 1231-1251.
  • [26] Lee, A. and Seshia, S. (2016). Introduction to Embedded Systems: A Cyber-Physical Systems Approach, 2nd Edn, MIT Press, Cambridge.
  • [27] Li, J., Yu, X. and Zhou, M. (2020). Analysis of unbounded Petri net with lean reachability trees, IEEE Transactions on Systems, Man, and Cybernetics: Systems 50(6): 2007-2016.
  • [28] Liu, H.C., You, J.X., Li, Z. and Tian, G. (2017). Fuzzy Petri nets for knowledge representation and reasoning: A literature review, Engineering Applications of Artificial Intelligence 60: 45-56.
  • [29] Long, Q. (2016). A novel research methodology for supply network collaboration management, Information Sciences 331: 67-85.
  • [30] Lupi, F., Cimino, M.G., Berlec, T., Galatolo, F., Corn, M., Rožman, N., Rossi, A. and Michele Lanzetta, M. (2023). Blockchain-based shared additive manufacturing, Computers & Industrial Engineering 183: 109497.
  • [31] Majdzik, P. (2022). A feasible schedule for parallel assembly tasks in flexible manufacturing systems, International Journal of Applied Mathematics and Computer Science 32(1): 51-63, DOI: 10.34768/amcs-2022-0005.
  • [32] Meyer, M., Glas, A. and Eßig, M. (2021). Systematic review of sourcing and 3D printing: Make-or-buy decisions in industrial buyer-supplier relationships, Management Review Quarterly 71: 723-752.
  • [33] Murata, T. (1989). Petri nets: Properties, analysis and applications, Proceedings of the IEEE 77(4): 541-580.
  • [34] Nuñez Rodriguez, J., Andrade Sosa, H., Villarreal Archila, S. and Ortiz, A. (2020). System dynamics modeling in additive manufacturing supply chain management, Processes 9(6): 1-5.
  • [35] Patalas-Maliszewska, J., Posdzich, M. and Skrzypek, K. (2022). Modelling information for the burnishing process in a cyber-physical production system, International Journal of Applied Mathematics and Computer Science 32(3): 345-354, DOI: 10.34768/amcs-2022-0025.
  • [36] Peng, L., Huang, S., Mokasdar, Zhou, H. and Hou, L. (2017). The impact of additive manufacturing in the aircraft spare parts supply chain: Supply chain operation reference (SCOR) model based analysis, Production Planning & Control 25(13-14): 1169-1181.
  • [37] Persson, F., Bartoll, C., Ganovic, A., Lidberg, M., Nilsson, M., Wibaeus, J. and Winge, F. (2012). Supply chain dynamics in the SCOR model - A simulation modeling approach, Proceedings of the 2012 Winter Simulation Conference, Berlin, Germany, pp. 3821-3832.
  • [38] Qi, L., Su, Y., Zhou, M. and Abusorrah, A. (2023). A state-equation-based backward approach to a legal firing sequence existence problem in Petri nets, IEEE Transactions on Systems, Man, and Cybernetics: Systems 53(8): 4968-4979.
  • [39] Reisig, W. and Rozenberg, G. (1998). Lectures on Petri Nets I: Basic Models: Advances in Petri Nets, Springer-Verlag, Berlin/Heidelberg.
  • [40] Rinaldi, M., Caterino, M., Manco, P., Fera, M. and Macchiaroli, R. (2021). The impact of additive manufacturing on supply chain design: A simulation study, Procedia Computer Science 180: 446-455.
  • [41] Ryan, M., Eyers, D., Potter, A., Purvis, L. and Gosling, J. (2017). 3D printing the future: Scenarios for supply chains reviewed, International Journal of Physical Distribution & Logistics Management 47(10): 992-1014.
  • [42] Saleh, A., Chiachío, M., Salas, F. and Kolios, A. (2023). Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets, Reliability Engineering & System Safety 231: 109013.
  • [43] Saren, S.K., Blaga, F., Dzitac, S. and Vesselenyi, T. (2017). Decision based modeling of a flexible manufacturing cell based on hierarchical timed colored Petri nets, Procedia Computer Science 122: 253-260.
  • [44] Sharma, A., Jamwal, A., Agrawal, R. and Jain, J.K. (2020). Indicators to sustainable supply chain management in Indian additive manufacturing industries, Proceedings of the National Conference on Recent Advancement in Engineering, Udaipur, India.
  • [45] Su, Y., Qi, L. and Zhou, M. (2023). A backward algorithm to determine the existence of legal firing sequences in ordinary petri nets, IEEE Robotics and Automation Letters 8(6): 3190-3197.
  • [46] SCC (2017). Supply chain operations reference model (SCOR), APICS, Chicago, https://www.apics.org/docs/default-source/scor-training/scor-v12-0-framework-introduction.pdf?sfvrsn=2.
  • [47] Wiśniewski, R. (2021). Design of Petri net-based cyber-physical systems oriented on the implementation in field programmable gate arrays, Energies 14(21): 7054.
  • [48] Wiśniewski, R., Bazydło, G., Wojnakowski, M. and Popławski, M. (2023a). Hippo-CPS: A tool for verification and analysis of Petri net-based cyber-physical systems, in L. Gomes and R. Lorenz (Eds), Application and Theory of Petri Nets and Concurrency, Springer Nature, Cham, pp. 191-204.
  • [49] Wiśniewski, R., Patalas-Maliszewska, J., Wojnakowski, M., Topczak, M. and Zhou, M. (2023b). Fast verification of Petri net-based model of industrial decision-making systems: A case study, IEEE International Conference on Systems, Man, and Cybernetics, Hawaii, USA.
  • [50] Wojnakowski, M., Wiśniewski, R., Bazydło, G. and Popławski, M. (2021). Analysis of safeness in a Petri net-based specification of the control part of cyber-physical systems, International Journal of Applied Mathematics and Computer Science 31(4): 647-657, DOI: 10.34768/amcs-2021-0045.
  • [51] Wu, H., Mehrabi, H., Naveed, N. and Karagiannidis, P. (2022). Impact of strategic control and supply chain management on recycled plastic additive manufacturing, Journal of Cleaner Production 364: 132511.
  • [52] Wulandari, R., Ridwan, A.Y. and Muttaqin, S. (2023). Halal supply chain performance measurement model in food industry using SCOR model, AHP method and OMAX, Proceedings of the 3rd International Conference on Experimental and Computational Mechanics in Engineering, ICECME 2021, Banda Aceh, Indonesia, pp. 187-197.
  • [53] Yan, R., Dunnett, S. and Jackson, L.M. (2022). Model-based research for aiding decision-making during the design and operation of multi-load automated guided vehicle systems, Reliability Engineering & System Safety 219: 108264.
  • [54] Yilmaz, O.F. (2020). Examining additive manufacturing in supply chain context through an optimization model, Computers & Industrial Engineering 142: 106335.
  • [55] Yu, W., Yan, C., Ding, Z., Jiang, C. and Zhou, M. (2018). Analyzing e-commerce business process nets via incidence matrix and reduction, IEEE Transactions on Systems, Man and Cybernetics: Systems 48(1): 130-141.
  • [56] Zanon, L.G., Arantes, R.F.M., Del Rosso, L.D., Calache, L.C. and Carpinetti, R. (2020). A decision making model based on fuzzy inference to predict the impact of SCOR® indicators on customer perceived value, International Journal of Production Economics 223: 107520.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-055dbae6-15e7-4f8c-958a-7b90256e3afd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.