PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical description of concentration of radiation displacement defects in oxide crystals as function of electrons or neutrons energy

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of this work is the description of dependence of the concentration of radiation displacements defects (RDD) induced by electrons and neutrons in garnets, perovskites, silicates, germanates, and tungsted bronzes type crystals (Y3Al5O12, Gd3Ga5O12, YAlO3, LiNbO3, Bi4Si3O12, Bi4Ge3O12, Ca0.28Ba0.72Nb2O6) on the energy of particles by analytical function. The dependences were determined on the basis of calculations made using the Monte-Carlo method realized in the Atom Collision Cascade Simulation program. The results of calculations show that the concentrations of RDD reduced to one impinging particle increased initially with the particles energy and they saturates for the electron and neutron energy above 3-36 MeV, depending on crystal, sublattice and kind of irradiation particle. A wide range of energies for which the concentration of RDD is independent of the energy of particles (neutrons, electrons) makes them potential materials for the dosimetry of high-energy particles. The comparison of the concentrations of RDD calculated for different sublattices as well as for the cases of electrons and neutrons is made. In the case of irradiation with electrons, the relative concentration of RDD of the oxygen sublattice strongly depends on the energy of electrons and the crystal and varies in the range of 10-90%. In the case of neutrons, the relative concentration of RDD of the oxygen sublattice does not depend on the neutron energy and is in the range of 66-84% depending on the crystal.
Rocznik
Strony
41--52
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
  • Institute of Engineering Materials, Rzeszow University, Rzeszow, Poland
Bibliografia
  • 1. Ubizskii S.B., Matkovskii A.O., Mironova-Ulmane N., Skvortsova V., Suchocki A., Zhydachevskii Y.A., Potera P.: Displacement Defect Formation in Oxide Crystals under Irradiation. Physica Status Solidii (a) 177 (2000) 349-366.
  • 2. Pooley D.: F-centre production in alkali halides by electron-hole recombination and a subsequent [110] replacement sequence: a discussion of the electron-hole recombination. Proc. Phys. Soc. 87 (1966) 245-246.
  • 3. Hersh H.N.: Proposed excitonic mechanism of color-center formation in alkali halides. Phys. Rev. 148(2) (1966) 928-932.
  • 4. Kristianpoller N., Israeli M.: Excitonic processes and thermoluminescence. Phys. Rev. B 2(6) (1970) 2175-2182.
  • 5. Sibley W.A., Hen Y.: Radiation damage in MgO. Phys. Rev. 160(3) (1967) 712-716.
  • 6. Klinger M.I., Lushchik Ch.B., Mashovets T.V., Kholodar G.A., Sheĭnkman M.K., Elango M.A.: Defect formation in solids by decay of electronic excitations. Sov. Phys. Uspekhi. 28(11) (1985) 994-1014.
  • 7. Rose T.S., Hopkins M.S., Fields R.A.: Characterization and control gamma and proton radiation effects on the performance of Nd:YAG and Nd:YLF lasers. IEEE J. Quantum Elect. 31(9) (1995)1593-1602.
  • 8. Sugak D., Matkovskii A., Durygin A., Suchocki A., Solski I., Ubizskii S., Kopczyński K., Mierczyk Z., Potera P.: Influence of color centers on optical and lasing properties of the gadolinium garnet single crystal doped with Nd3+ ions. J. Luminescence 82 (1999) 9 -15.
  • 9. Bedilov M.R., Egamov U.: Influence of radiation defects on operating characteristics of solid-state lasers. Soviet J. Quantum Elect. 11(7) (1981) 969-970.
  • 10. Sugak D.Yu., Matkowski A.O., Grabovskii V.V., Prokhorenko V.I., Suchocki A., Durygin A.M., Solskii I.M., Shakhov A.P.: Influence of the -radiation on the generation characteristics of the YAlO3:Nd crystals. Acta Phys Polonica 93(4) (1998) 643-648.
  • 11. Kaminski A.A.: Laser crystals. Their physics and properties. Springer, Berlin, 1981.
  • 12. Chen F., Ju M., Gutsev G.L., Kuang X., Lu C., Yeung Y.: Structure and luminescence properties of a Nd3+ doped Bi4Ge3O12 scintillation crystal: new insights from a comprehensive study. J. Mater. Chem. C 5 (2017) 3079-3087.
  • 13. Chen F., Ju M., Kuang X., Yeung Y.: Insights into the Microstructure and Transition Mechanism for Nd3+-Doped Bi4Si3O12: A Promising Near-Infrared Laser Material. Inorg. Chem. 57 (8) (2018) 4563–4570.
  • 14. Di J., Xu X., Xia Ch., Zhoua D., Sai Q., Xu Y.: Growth and spectral properties of Yb:Ca0.28Ba0.72Nb2O6 disordered crystal. Optik 125 (2014) 6620-6624.
  • 15. Molina P., Rodríguez E., Jaque D., Bausá L.E., García-Solé J., Zhang H., Jiyang W.G., Jiang M.: Optical spectroscopy of neodymium-doped calcium barium niobate ferroelectric crystals. Journal of Luminescence 129 (2009)1658-1660.
  • 16. Rose T.S., Hopkins M.S., Fields R.A.: Characterization and control of gamma and proton radiation effects on the performance of Nd:YAG and Nd:YLF lasers. IEEE. J. Quant. Electronics 31 (1995)1593-1602.
  • 17. Israel M.H. Cosmic-Ray Electrons between 12 MeV and 1 GeV in 1957. Journal of Geophysical Research 74(19) (1969) 4701-4713.
  • 18. Kowatari K., Nagaoka K., Satoh S., Ohta Y., Abukawa J., Tachimori S., Nakamura T.: Evaluation of the Altitude Variation of the Cosmic-ray Induced Environmental Neutrons in the Mt. Fuji Area. Journal of Nuclear Science and Technology 42(6) (2005) 495–502.
  • 19. Friedland E.: Radiation Damage in Metals. Critical Reviews in Solid State and Material Sciences 25(2) (2001) 87-143.
  • 20. Kinchin G.H., Pease R.S.: The Displacement of Atoms in Solids by Radiation. Rep. Progr. Phys. 18 (1955) 1-52.
  • 21. McKinley W.A., Feshbach H.: The Coulomb Scattering of Relativistic Electrons by Nuclei. Phys. Rev. 74(12) (1948) 1759-1763.
  • 22. Ubizskii S.B.: Calculations of concentration of radiation defects in complex compound during cascade-creation irradiation. Electronics - The bulletin of State University “Lvivska Polytechnica” 357 (1998) 88-98.
  • 23. Potera P.: Concentration of radiation displacement defects in BSO and BGO crystals irradiated by electrons or neutrons. CEJP 6(1) (2008) 52-56.
  • 24. Veiller L., Crocombette J.P., Ghaleb D.: Molecular dynamics simulation of the a-recoil nucleus displacement cascade in zirconolite. Journal of Nuclear Materials 306 (2002) 61-72.
  • 25. Aubin-Chevaldonnet V., Gourier D., Caurant D., Esnouf S., Charpentier T., Costantini J.M.: Paramagnetic defects induced by electron irradiation in barium hollandite ceramics for caesium storage. J. Phys.: Condens. Matter 18 (2006) 4007–4027.
  • 26. Cheng G., Wei N., Wang L., Qi J., Zeng Q., Lu T., Wang Z.: An ab initio molecular dynamics study on the threshold displacement energies in yttrium aluminum garnet. J. Appl. Phys. 126 (2019) 055701.
  • 27. Database of Ionic Radii, http://abulafia.mt.ic.ac.uk/shannon/ptable.php.
  • 28. Cobett J.B., Burgoin J.C., Point defect in solid. [In] vol 2, semiconductors and molecular crystals. J.H. Crawford, Jr.L.M. Slifkins, [ed] Plenum Press, New York and London, 1975.
  • 29. Chen S., Bernard D.: On the calculation of atomic displacements using damage energy. Results in Physics 16 (2020) 102835.
  • 30. Nordlund K., Zinkle S.J., Sand A.E., Granberg F., Averback R.S., Stoller R., Suzudo T., Malerba L., Banhart F., Weber W.J., Willaime F., Dudarev S.L., Simeone D.: Improving atomic displacement and replacement calculations with physically realistic damage models. Nature Communications 9 (2018)1084.
  • 31. Guo D., He C., Zang H., Zhang P., Ma L., Li T., Cao X.: Re-evaluation of neutron displacement cross sections for silicon carbide by a Monte Carlo approach. Journal of Nuclear Science and Technology 53(2) (2016) 161–172.
  • 32. Fabelo A.L., Hernández I.P., Pernía D.L., Alfonso Y.A., Inclán C.M.C.: Electron and positron contributions to the displacement per atom profile in bulk multi-walled carbon nanotube material irradiated with gamma rays. Nucleus 53 (2013) 5-9.
  • 33. Kim J., Pearton S. J., Fares C., Yang J., Ren F., Kima S., Polyakovd A. Y.: Radiation damage effects in Ga2O3 materials and devices. J. Mater. Chem. C 7 (2019) 10-24.
  • 34. Allam E.E., Inguimbert C., Addarkaoui S., Meulenberg A., Jorio A., Zorkani I.: NIEL calculations for estimating the displacement damage introduced in GaAs irradiated with charged particles. IOP Conf. Series: Materials Science and Engineering 186 (2017) 012005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-055d0b98-a89b-44c1-ac8b-d9d7f94a0fc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.