PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Legal Regulations and Methods Neutralising Expired Food Products

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In retail chains, an expired product is withdrawn from sales and becomes waste which should be managed properly. Expired products cannot be placed back on the market for sale, sold at a reduced price or in promotion. The losses in the food trade result mainly from an inefficient organisation and excessive stocks that cause food expiration and perishability. In this chain, the expired food products, which in majority go to landfill sites, constitute a significant part. This article presents the legal regulations regarding neutralisation of expired food products together with their utilisation possibilities. One of the basic documents is the Directive 2009/28/EC of the European Parliament and the Council of 23 April 2009 on the promotion of the use of energy from renewable sources. The second important document is the Directive of the Council 1999/31/EC on the landfill of waste. According to the Regulation No 852/2004 of 29 April 2004 on the hygiene of foodstuffs, every facility should have elaborated procedures describing the manner of handling foodstuffs not meeting the requirements of health quality as well as food waste. One of the most often applied methods to manage waste is its thermal treatment. Incineration is problematic in environmental and social aspects. It includes numerous requirements and legal restrictions. Pyrolysis is an alternative to incineration. Composting in aerated bed is a widely known utilisation method of biological waste from agriculture and agri-food industry. Mineralisation of organic substances in biogas plants is a method for controlled course of processes aiming at the production of greenhouse gases, the negative effect on meteorological conditions of which is unquestionable in many social circles. Biomass fermentation in biogas plants is prospective because it enables to limit the emission of methane during uncontrolled biochemical processes accompanying landfill of waste.
Rocznik
Strony
217--224
Opis fizyczny
Bibliogr. 59 poz., tab.
Twórcy
  • Department of Environmental Engineering Technology and Systems, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
  • 1. Aniszewska M. 2007. Modern self-propelled machines for processing compost prisms. Agricultural, Horticultual and Forest Engineering, No. 4.
  • 2. Arvanitoyannis I.S., Kassaveti A. 2008. Fish industry waste: treatments, environmental impacts, current and potential uses. International Journal of Food Science and Technology, vol. 43, 726–745.
  • 3. Baeta-Hall L., CeuSaagua M., Lourdes Bartolomeu M., Anselmo A.M. 2005. Bio-degradation of olive oil husks in composting aerated piles. Bioresource Technology, 96, 69–78.
  • 4. Błaszczyk J.K. 2007. Microorganisms in environmental protection. PWN, Warszawa.
  • 5. Boniecki P., Dach J., Pilarski K., Piekarska-Boniecka H. 2012. Artificial neural networks for modeling ammonia emissions released from sewage sludge composting. Atmospheric Environment, 57, 49–54.
  • 6. Byczyński J. 2012. A new era of utilization. Gazeta Polska. No. 35, http://www.gazetapolska.pl [access 13.10.2016].
  • 7. Cebula J. 2012. Selected methods of treatment of agricultural and landfill biogas. Monograph, Wydawnictwo Politechniki Śląskiej, Gliwice.
  • 8. Curkowski A., Oniszk-Popławka A., Haładyj A. 2013. Biogas plant – a deliberate choice. Foundation Institute for Sustainable Development. Warszawa.
  • 9. Czekała W., Witaszek K., Rodriguez Carmona P. C., Grzelak M. 2013. Installations for industrial bio-waste composting: advantages and disadvantages. Agricultural, Horticultual and Forest Engineering, 2, 23–25.
  • 10. Dinuccio E., Balsari P., Gioelli F., Menardo S. 2010. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresource Technology, vol. 101, 3780–3783.
  • 11. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources (OJ L EU L 09.140.16).
  • 12. Council Directive 1999/31/EC on the landfill of waste (Journal of Laws L182 of 16.7.1999, p. 1).
  • 13. European Commission (DG ENV) 2010. Preparatory study on food waste across EU 27. Final Report ss. 213 Directorate C – Industry.
  • 14. Galanakis C.M. 2012. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science & Technolog. 26(2), August, 68–87.
  • 15. Gawłowski S. 2011. Management of EU funds acquired in Poland in the area of environmental protection. Rocznik Ochrony Środowiska, vol. 13, 269–282.
  • 16. Grochowalski A., Wybraniec S., Górski L., Sokołowski M. 1993. Solid phase extraction and capillary GC-ECD analysis of polychlorinated dibenzo-p-dioxins in chlorinated phenols. Chem. Anal., 38, 279–286.
  • 17. Gunders D. 2012. Wasted: How America is losing up to 40 percent of its food from farm to fork to landfill. The Natural Resources Defense Council (NRDC). Issue paper, August 2012. iP:12–06-B. http://www.nrdc.org/food/files/wastedfood-IP.pdf.
  • 18. Gustavsson J., Cederberg CH., Van Otterdijk U. S. R., Meybeck A. 2011. Global food losses and food waste. Study conducted for the International Congress SAVE FOOD! at Interpack 2011. Food and Agriculture Organization of the United Nation, Düsseldorf, pp. 28.
  • 19. Kazimierowicz J. 2014. Organic waste used in agricultural biogas plants, Journal of Ecological Engineering, 15(2), 88–92.
  • 20. Kazimierowicz J. 2017. Neutralisation of expired food products in the process of methane fermentation. Doctorate. Bialystok University of Technology. Faculty of Civil and Environmental Engineering, 28/09/2017.
  • 21. Kucharczak K., Stępień W., Gworek B. 2010. Composting of municipal waste as a method of organic substance recovery. Protection of the Environment and Natural Resources, No. 42, 240–254.
  • 22. Lansing S., Botero R., Martin J.F. 2008. Waste treatment and biogas quality In small-scale agricultural digesters. Bioresource Technology, vol. 99, 5881–5890,
  • 23. Ledakowicz S., Krzystek L. 2005. The use of methane fermentation in the utilization of waste from the agri-food industry. Biotechnology 3(70), 165–183.
  • 24. Lewandowski W.M. 2012. Pro-ecological renewable energy sources, WNT Publisher, Warsaw, 360–374.
  • 25. Luostarinen S., Luste S., Sillanpää M. 2009. Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresource Technology, vol. 100, 79–85.
  • 26. Manczarski P. 2007. Composting of municipal waste. A paper on the Forum of Environmental Protection Technology POLEKO
  • 27. Manczarski P. 2012. Mechanical and biological treatment and storage of waste in the light of new regulations. Zarządzanie Gospodarką Odpadami, 117–144.
  • 28. Marchwińska E., Budka D.: The problem of waste in the aspect of public health. http://www.srodowiskoazdrowie.pl/wpr/Aktualnosci/Czestochowa/Referaty/Marchwinska.pdf?f27ba39e183cc4811d 3754669e5fce7a=96a08867e409ac927ff0b619a55 5c326
  • 29. Matcalf and Eddy Inc. 2003. Treatment and Reuse, fourth ed. McGraw-Hill. Wastewater Egineering. New York, pp. 1546–1554.
  • 30. Mokrzycki E., Uliasz-Bocheńczyk A. 2005. Alternative fuels from waste for the power industry. Energy Policy Journal, Vol. 8, pp. 508.
  • 31. Mollera H.B., Sommer S.G., Ahring B.K. 2004. Methane productivity of manure, straw and solid fractions of manure. Biomass and Bioenergy, Vol. 26, 485–495.
  • 32. Nowak B. 2013. Dilemmas of economic efficiency of projects for the thermal treatment of municipal waste. Energy Policy Journal, 16(4), 201–216.
  • 33. Olszewski T., Dach J., Jędruś A. 2005. Modeling of the composting process of natural fertilizers in the aspect of heat generation. Journal of Research and Applications in Agricultural Engineering, 50(2), 40–42,
  • 34. Piecuch T. 1999. The Pyrolitic Convective Waste Utilizer. Environmental Science Research, Volume 58, Kluwer Academic (Plenum Publisher – New York, Boston, Dordrecht, London, Moscow).
  • 35. Piecuch T. 2006. Outline of thermal waste utilization methods. Handbook of the Koszalin University of Technology, pp. 396.
  • 36. Pilarski K., Adamski M.: Perspectives of biogas production with taking into consideration reaction mechanism in the range of quantitative and qualitative analyses of fermentation processes. Journal of Research and Application in Agriculture Engineering, 54(2), 81–86.
  • 37. Poskrobko B., Poskrobko T. 2012. Environmental management in Poland. Polskie Wydawnictwo Ekonomiczne Warsaw, pp. 273.
  • 38. Puyuelo B., Gea T., Sánchez A. 2010. A new control strategy for the composting process based on the oxygen uptake rate. Chemical Engineering Journal, 165, 161–169.
  • 39. Romaniuk W., Łukaszuk M., Karbowy A. 2010. Potential for development of biogas plants on farms in Poland. Problemy Inżynierii Rolniczej No. 4, 129–139.
  • 40. Rosik-Dulewska C. 2006. Basics of waste management. PWN, Warsaw, pp. 342.
  • 41. Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 specifying sanitary rules for animal by-products not intended for human consumption.
  • 42. Regulation of the Minister of the Environment of November 10, 2015 on the list of waste types that natural persons or organizational units that are not entrepreneurs may recycle for their own needs, and acceptable methods of their recovery (Journal of Laws 2015, item 93).
  • 43. Skowron H. 2003. Thermal treatment of waste – news and comments continued. Przegląd Komunalny, August.
  • 44. Śmiechowska M. 2015. Sustainable consumption and food waste. Ann. Acad. Med. Gedan. 45, 89–97.
  • 45. Sokołowski M. 1994. Dioxins – assessment of environmental hazards and methods of their detection. Military Institute of Chemistry and Radiometry. Brochure issued by PIOŚ – WARJNTECH, Warsaw.
  • 46. Sołowiej P., Neugebauer M., Piechocki J. 2010. The effect of additives and aeration on the dynamics of the composting process. Agricultural Engineering 5(123), 259–265.
  • 47. Staszczyk J. 2003. Composting of organic waste and sewage sludge – machinery, equipment, technologies, legal conditions and sources of financing. International Scientific and Technical Conference "Practical Ecology". Ustka.
  • 48. Szlachta J., Fugol M. 2009. Analysis of biogas production possibilities based on slurry and maize silage. Agricultural Engineering 5(114), 275–280.
  • 49. Szlachta J. 2008. Possibilities of biogas production from agricultural products. A paper at the International Conference at IBMER, Warsaw, 223–229.
  • 50. The Act of 14 December 2012 on waste, Dz.U. 2013 item 21.
  • 51. The Act of 14 March 1985 on the State Sanitary Inspection, Dz. U. of 2006 No. 122, item 851 with later d.
  • 52. The Act of 18 July 2001 on Water Law (Journal of Laws of 2005 No. 239, item 2019, as amended).
  • 53. The Act of 25 August 2006 on food and nutrition safety, Dz. U. of 2010, No. 136, item 914 with later d.
  • 54. The Act of June 7, 2001 on collective water supply and collective sewage disposal (Journal of Laws of 2006, No 123, item 858, as amended).
  • 55. Węglarzy K., Skrzyżala I., Pellar A. 2011. Agricultural biogas plant in kostkowice. First experiences. Journal of Research and Applications in Agricultural Engineering, 56(4), 189–192.
  • 56. Wielgosiński G.: The choice of technology for the thermal transformation of municipal waste. Nowa Energia, No. 1, 2012.
  • 57. Yamada Y., Kawase Y. 2006. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption. Waste Management 26, 49–61,
  • 58. Yoshimura H., Masuda Y., Hori Y., Kuratsune M., Okumara M. Yusho A. 1996. Human Disasters Caused by PCBs and Related Compounds. Kynshu University Press, Fukuaka, pp. 361.
  • 59. Yoshimura H., Masuda Y. 1994. Approach to Risk Assessment of Chlorinated Dioxins from Yusho PCB Poisoning. Organohalogen Compounds 21, pp. 11.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05552a19-3a26-428c-b5ae-613efba933ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.