PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The risk of large blackout failures in power systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the assessment of blackout hazards in the power systems. On the basis of statistical data from more than one hundred failures in power systems that affected the world in the last fifty years, the analysis was carried out regarding the number of people affected by a blackout, power losses in the system, duration of a failure and its direct causes. The paper also describes the methodology of risk analysis and vulnerability analysis of the extraordinary events occurrence in electrical power systems resulting in failures. The structure of risk analysis was based on the bow tie model, identifying threats, unwanted events, barriers and consequences of a system failure. Moreover, particular attention was drawn to the impact of the power reserve deficit in the Polish Power System in the coming years on the increase in the risk of a blackout failure.
Rocznik
Strony
411--426
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wz.
Twórcy
  • Institute of Electric Power Engineering, Poznań University of Technology Piotrowo 3a, 60-965 Poznań, Poland
  • Institute of Electric Power Engineering, Poznań University of Technology Piotrowo 3a, 60-965 Poznań, Poland
Bibliografia
  • [1] Yanbing J., Ruiqiong L., Xiaoqing H., PengW., Risk Assessment of Cascading Failures in Power Grid Based on Complex Network Theory, 2018 International Conference on Control, Automation, Robotics & Vision, Phuket, Thailand, pp. 1–6 (2016).
  • [2] Złotecka D., Sroka K., The characteristics and main causes of power system failures basing on the analysis of previous blackouts in the world, 2018 International Interdisciplinary PhD Workshop IIPhDW, Świnoujście, Poland, pp. 257–262 (2018).
  • [3] Atputharajah A., Saha T., Power System Blackouts – Literature review, Fourth International Conference on Industrial and Information Systems, ICIIS 2009, 28 – 31 December 2009, Sri Lanka, pp. 460–465 (2009).
  • [4] Veloza O., Santamaria F., Analysis of major blackouts from 2003 to 2015: Classification of incidents and review of main causes, Electricity Journal 26, pp. 42–49 (2016).
  • [5] List of major power outages, https://en.wikipedia.org/wiki/List_of_major_power_outages, accessed November 2017.
  • [6] Zeng B., Shaojie O., Jinhua Z., Hui S., Geng W., Ming Z., An analysis of previous blackouts in the world: Lessons for China’s power industry, Renewable and Sustainable Energy Reviews 42, pp. 1151–1163 (2015).
  • [7] Woliński K., Power system failures in Europe (in Polish),Wiadomości Elektrotechniczne, Rok LXXII, no. 3, pp. 3–4 (2004).
  • [8] Project SESAME: Securing the European Electricity Supply against Malicious and Accidental Threats. D1.1. Analysis of historic outages, https://www.sesame-project.eu/publications/deliverables/d1-1- report-on-the-analysis-of-historic-outages/at_download/file, accessed June 2018.
  • [9] Gjerde O., Kjølle G.H., Detlefsen N. K., Brønmo G., Risk and Vulnerability Analysis of Power Systems Including Extraordinary Events, Proceedings of IEEE PES Trondheim PowerTech, Trondheim,Norway (2011).
  • [10] Entso-e Continental Europe Operation Handbook, Policy 5: Emergency Operations v 3.1, https://docstore.entsoe.eu/publications/system-operations-reports/operation-handbook/Pages/default.aspx, accessed June 2018.
  • [11] Gou B., Zheng H.,WuW., Yu X., Probability Distribution of Power System Blackouts, Proceedings of IEEE PES General Meeting, pp. 1–8 (2007).
  • [12] Yu X., Singh C., A Practical Approach for Integrated Power System Vulnerability Analysis Protection Failures, IEEE Transactions on Power Systems, vol. 19, no. 4, pp. 1811–1820 (2004).
  • [13] Yan J., Ji Y., Risk Assessment of Six Indicators in Power System Operation, 2010 Asia-Pacific Power and Energy Engineering Conference, pp. 1–4 (2010).
  • [14] Wang Z., Hill D., Chen G., Dong Z.Y., Power system cascading risk assessment based on complex network theory, Physica A 482, pp. 532–543 (2017).
  • [15] Dobson I., Chen J., Thorp J. S., Carreras B. A., Newman D. E., Examining criticality of blackouts in power system models with cascading events, Proceedings of the 35th Hawaii International Conference on System Sciences (2002).
  • [16] Mei S., He F., Zhang X., Wu S., Wang G., An Improved OPA Model and Blackout Risk Assessment, IEEE Transactions on Power Systems, vol. 24, no. 2, pp. 814–823 (2009).
  • [17] Cheng L., Liu M., Dent C., A Markov-Based Cascading Outage Searching Method Considering Load-Dependent Outages, 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), pp. 1–6 (2018).
  • [18] Mukherjee S., Nateghi R., Hastak M., A multi-hazard approach to assess severe weather-induces major power outage risks in the U.S., Reliability Engineering and System Safety 175, pp. 283–305 (2018).
  • [19] Yu S.,Wu H., Geng H., Yu J., Mao S., Hou H., Mao Z., Study on Risk Assessment of the Electric Power Tower and Pole Damage in Power System Under Typhoon Disaster, The 4th International Workshop on Wireless Technology Innovations in Smart Grid, Procedia Computer Science 130, pp. 1164–1169 (2018).
  • [20] Zhao T., Lu D., Wang D., Zeng Y., Liu Y., A Risk Assessment Approach for Power System Based on a Comprehensive Fault Probabilistic Model, 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China, pp. 574–577 (2015).
  • [21] Gou B., Wu W., WiP Abstract: Possibility of Power System Blackout Prediction, ACM/IEEE International Conference on Cyber-Physical Systems ICCPS (2013).
  • [22] Kaplan, S., Garrick, B.J., On the quantitative definition of risk, Risk Analysis 1, vol. 1, pp. 11–27 (1981).
  • [23] Wal K. D., The Kaplan and Garrick Definition of Risk and its Application to Managerial Decision Problems, Dudley Knox Library, Monterey (2011).
  • [24] Wróblewski J. (ed.), Risk assessment – review of methods, Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego, Państwowy Instytut Badawczy (in Polish), Józefów (2018).
  • [25] Forecast of peak demand for power in 2016-2035, https://www.pse.pl/-/prognoza-pokrycia-zapotrzebowania-szczytowego-na-moc-w-latach-2016-2035 (in Polish), accessed June 2018.
  • [26] MalskaW., Analysis of the Impact of Wind Speed for Power Generation on the Example of Wind Farm, Przegląd Elektrotechniczny (in Polish), vol. 93, no. 4, pp. 54–57 (2017).
  • [27] Paska J., Wind power plants in electric power system and their load carrying capability, Przegląd Elektrotechniczny, vol. 85, no. 12, pp. 224–230 (2009).
  • [28] www.pse.pl/dane-systemowe, accessed May 2018.
  • [29] Lubośny Z., The Impact of Renewable Energy Generation Sources on the Operational Safety of the National Power System, XVII Seminar "Automation in Power Engineering" (in Polish), Gliwice, Energotest sp. z o.o., pp.1–16 (2014).
  • [30] Yuxin Z., Xuemin Z., Shengwei M., Deming X., Shuai W., Rui S., Blackout Risk Analysis and Control of Power System Integrated withWind Farm, 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, China, pp. 876–882 (2016).
  • [31] Kielerz A., Smart Grid and Sustainable Electricity Systems with Power Production Increase from Various Energy Sources, XXIX Conference on Issues of Energy Resources and Energy in The National Economy, Zakopane, Poland, pp. 111–119 (2015).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-054b16cc-4c78-4452-b804-a8c81fa8c87d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.