PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the addition of microencapsulated phase change material to epoxy resin on the thermal diffusivity of the resulting structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work concerns the study of the effect of adding microgranules containing a phase change material (PCM) on the thermal diffusivity value of the resulting composite structure. Two commercially available epoxy resins were applied as the composite matrix material: pure epoxy resin and epoxy resin with a filler in the form of metal powder. The dispersed phase was the BASF Micronal DS5038 X microgranulate, i.e. a bed of polymer spherical shells containing PCM filling. The tests were carried out using the modified Ångström method in a symmetrical bilateral harmonic excitation of the temperature of outer sides of assembled two tested disc-shaped samples. The temperature range of measurements covered the interval from 0°C to 35°C, i.e. most of the typical working range of microgranules. In selected measurement cases, the tests were extended to temperatures from ‒10°C to 75°C. The results obtained for the four structures studied were compared and analyzed to illustrate the quantitative effects of structure modification and to document the qualitative effects of the observed phase changes that occurred both on heating and cooling.
Twórcy
autor
  • Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
  • Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
  • Air Force Institute of Technology, ul. Księcia Bolesława 6, 01-494 Warszawa, Poland
  • aculty of Mechatronics, Armament and Aerospace, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
  • Polish Air Force University, Faculty of Aviation, ul. Dywizjonu 303 no 35, 08-521 Dęblin, Poland
Bibliografia
  • 1. Baker A., Dutton D., Kelly D. Composite materials for aircraft structure, AIAA, Reston VA, 2004.
  • 2. Hsissou R., Seghiri R., Benzekri Z., Hilali M., Rafik M. Polymer composite materials: A comprehensive review, Composite Structures, 2021; 262: 1–15.
  • 3. Wiśniewski S. Thermodynamics (Termodynamika), WNT, 1980 (in Polish).
  • 4. Kandasamy R., Wang X. – Q., Mujumdar A. S. Transient cooling of electronics using phase change material (PCM)-based heat sinks, Applied Thermal Engineering, 2008; 28: 1047–1057.
  • 5. Al-Yasiri Q., Szabó M. Paraffin as a phase change material to improve building performance: An overview of applications and thermal conductivity enhancement techniques, Renew. Energy Environ. Sustain. 2021; 6: 38.
  • 6. Al-Yasiri Q., Szabó. Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis, Journal of Building Engineering, 2021; 36: 102122.
  • 7. Gracia A. Dynamic building envelope with PCM for cooling purposes – Proof of concept, Applied Energy, 2019; 235: 1245–1253.
  • 8. Malaquias A. F., Neves S. F., Campos J. B. L. M. Incorporation of phase change materials in fire protective clothing considering the presence of water, International Journal of Thermal Sciences, 2023; 183: 107870.
  • 9. Zhao W., Sudhakar N., Oztekin A. Heat transfer analysis of encapsulated phase change materials, Applied Thermal Engineering, 2013; 50: 143–151.
  • 10. Alizadeh A. Application of nanoparticles in the process of phase change paraffin in a chamber, Advances in Science and Technology Research Journal, 2019; 13(3): 113–119.
  • 11. Zheng Y., Zhao W., Sabol J. C., Tuzla K., Neti S., Oztekin A., Chen J. C. Encapsulated phase change materials for energy storage – Characterization by calorimetry, Solar Energy, 2013; 87: 117–126.
  • 12. Fořt J., Pavlík Z., Trník A., Pavlíková M., Černý R. Effect of the mode and dynamics of thermal processes on DSC-acquired phase-change temperature and latent heat of different kinds of PCM, Materials and Technology, 2017; 51: 919–924.
  • 13. Jaworski M., Wnuk R. Determination of thermal properties and characteristics of PCM-based heat storage elements for application in building envelope, EuroSun 2010, Int. Conference on Solar Heating, Cooling and Buildings, Graz, 28.09-1.10.2010.
  • 14. Schawe J. E. K., A comparison of different evaluation methods in modulated temperature DSC, Thermochimica Acta, 1995; 260: 1–16.
  • 15. Snoeck D., Priem B., Dubruel P., De Belie N. Encapsulated phase-change materials as additives in cementitious materials to promote thermal comfort in concrete structures, Materials and Structures, 2016; 49: 225–239.
  • 16. Babapoor A., Karimi G. Thermal properties measurement and heat storage analysis of paraffin nanoparticle-cell composites phase change material: Comparison and optimization, Applied Thermal Engineering, 2015; 90: 945–951.
  • 17. Tye R. P., Kubičár L., Lockmuller N. The development of a standard for contact transient methods of measurement of thermophysical properties, International Journal of Thermophysics, 2005; 26(6): 1917–1938.
  • 18. Volokhov G. M., Kasperovich A. S. Monotonic heating regime methods for the measurement of thermal diffusivity in Compendium of Thermophysical Property Methods, Ed. Maglić K.D., Cezairliyan A., Petelsky V.E., Plenum Press, New York, 1984.
  • 19. Ångström A. J. Neue Methode, das Warmeleitungsvermögen der Kupfer zu Bestimmen, Annalen der Physik und Chemie, 1861; 114: 513–530.
  • 20. Belling J. M., Umsworth J. Modified Ångström’s method for measurement of thermal diffusivity of materials with low conductivity, Review of Scientific Instruments, 1987; 58(6): 997–1002.
  • 21. Panas A. J. IR support of thermophysical property investigation – Study of medical and advanced technology materials, Infrared Thermography, Edited by Dr. Raghu V. Prakash, 2012.
  • 22. Panas A. J. Comparative-complementary investigations of thermophysical properties – High thermal resolution procedures in practice, in Thermophysics, 2010, Brno University of Technology, Faculty of Chemistry, 2010.
  • 23. Wiśniewski S. Heat transfer (Wymiana ciepła), PWN, 1979 (in Polish).
  • 24. Omen Ł., Szczepaniak R., Panas A. Investigation of carbon nanotube particles addition effect on the dispersed composite structure thermal diffusivity, Advances in Science and Technology Research Journal, 2023; 17(5): 280–288.
  • 25. Panas A. J., Szczepaniak R., Struczniewicz W., Omen Ł. Thermophysical properties of pressure-sensitive paint, Thermochimica Acta, 2023; 730: 1–6.
  • 26. Climate control MICRONAL® PCM, Microtek Laboratories, Inc. 2400 East River Road, Dayton, Ohio 45439, manufacturer’s data.
  • 27. Yu X., Luan J., Chen W., Tao J. Preparation and characterization of paraffin microencapsulated phase change material with double shell for thermal energy storage, Thermochimica Acta, 2020; 689: 178652.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-054a0180-2662-4edf-8e3e-a9cbab25d56a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.