PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quasi-static and dynamic properties of the intervertebral disc : experimental study and model parameter determination for the porcine lumbar motion segment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The study of axial loading is essential to determine the properties of intervertebral disc. The objectives of this work are (1) to quantify the mechanical properties of porcine lumbar intervertebral discs under static and cyclic compressive loading, and (2) to determine the parameters of a five-parameter rheological model for porcine and compare them with those obtained for human lumbar intervertebral discs. Methods: Thus, the porcine lumbar motion segments were subjected to quasi-static and dynamic compression tests. The quasi-static tests were used to obtain the static stiffness coefficient at different strain rates, while the data from the cyclic compressive tests were used to both determine the dynamic stiffness coefficient and to be fitted in a 5-parameter model, in order to simulate the creep response of the porcine intervertebral discs. Results: The results demonstrated that dynamic stiffness coefficient of porcine discs is between four and ten times higher than the static stiffness coefficient, depending on load applied. The parameters of the rheological model suggested a low permeability of nucleus and endplate during the fast response of porcine discs. In addition, the fast response in terms of displacement is four times higher than those documented for human discs. Conclusions: This study revealed that care must be taken on the comparison between porcine and human discs, since they present different behaviour under quasi-static and dynamic compressive loading.
Rocznik
Strony
59--66
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • University of Minho, Departamento de Engenharia Mecânica, Guimarães, Portugal
autor
  • University of Minho, Departamento de Engenharia Mecânica, Guimarães, Portugal
  • University of Minho, Departamento de Engenharia Mecânica, Guimarães, Portugal
  • University of Minho, Departamento de Engenharia Mecânica, Guimarães, Portugal
Bibliografia
  • [1] ASANO S., KANEDA K., UMEHARA S., TADANO S., The mechanical properties of the human L4-5 functional spinal unit during cyclic loading. The structural effects of the posterior elements, Spine, 1992, Vol. 17, 1343–1352.
  • [2] BERGMANN G. (ed.), Charité Universitaetsmedizin Berlin, “OrthoLoad”, 2008.
  • [3] BROWN T., ROBERT H.J., YORRA A.J., Some Mechanical Tests on the Lumbosacral Spine with Particular Reference to the Intervertebral Discs, J. Bone Joint. Surg. Am, 1957, Vol. 39-A, 1135–1164.
  • [4] BUSSCHER I., PLOEGMAKERS J.J.W., VERKERKE G.J., VELDHUIZEN A.G., Comparative anatomical dimensions of the complete human and porcine spine, Eur. Spine J., 2010, Vol. 19, 1104–1114.
  • [5] CAMPBELL-KYUREGHYAN N.H., YALLA S.V., VOOR M., BURNETT D., Effect of orientation on measured failure strengths of thoracic and lumbar spine segments, J. Mech. Behav. Biomed. Mater., 2011, Vol. 4, 549–557.
  • [6] CASTRO A.P.G., Development of a biomimetic finite element model of the intervertebral disc diseases and regeneration, Dissertation, University of Minho, 2014.
  • [7] CASTRO A.P.G., WILSON W., HUYGHE J.M., ITO K., ALVES J.L., Intervertebral disc creep behavior assessment through an open source finite element solver, J. Biomech., 2014, Vol. 47, 297–301.
  • [8] DATH R., EBINESAN A.D., PORTER K.M., MILES A.W., Anatomical measurements of porcine lumbar vertebrae, Clin. Biomech., 2007, Vol. 22, 607–613.
  • [9] ELLINGSON A.M., NUCKLEY D.J., Intervertebral disc viscoelastic parameters and residual mechanics spatially quantified using a hybrid confined/in situ indentation method, J. Biomech., 2012, Vol. 45, 491–496.
  • [10] HIRSCH C., NACHEMSON A., New observations on the mechanical behavior of lumbar discs, Acta Orthop. Scan., 1954, Vol. 23, 254–283.
  • [11] IZAMBERT O., MITTON D., THOUROT M., LAVASTE F., Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system, Eur. Spine J., 2003, Vol. 12, 562–566.
  • [12] JOHANNESSEN W., ELLIOTT D.M., Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression, Spine, 2005, Vol. 30, 724–729.
  • [13] JOHANNESSEN W., VRESILOVIC E.J., WRIGHT A.C., ELLIOTT D.M., Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery, J. Biomech. Eng., 2006, Vol. 128, 823–829.
  • [14] JOHANNESSEN W., VRESILOVIC E.J., WRIGHT A.C., ELLIOTT D.M., Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery, Ann. Biomed. Eng., 2004, Vol. 32, 70–76.
  • [15] KASRA M., SHIRAZI-ADL A., DROUIN G., Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations, Spine, 1992, Vol. 17, 93–102 .
  • [16] KELLER T.S., SPENGLER D.M., HANSSON T.H., Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading, J. Orthop. Res., 1987, Vol. 5, 467–478.
  • [17] KOHLHAUSER C., HELLMICH C., VITALE-BROVARONE C., BOCCACCINI A.R., ROTA A., EBERHARDSTEINER J., Ultrasonic Characterisation of Porous Biomaterials Across Different Frequencies, Strain, 2009, Vol. 45, 34–44.
  • [18] KORECKI C.L., MACLEAN J.J., IATRIDIS J.C., Dynamic compression effects on intervertebral disc mechanics and biology, Spine, 2008, Vol. 33, 1403–1409.
  • [19] LI S., PATWARDHAN A.G., AMIROUCHE F.M., HAVEY R., MEADE K.P., Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and lowfrequency vibration in axial compression, J. Biomech., 1995, Vol. 28, 779–790.
  • [20] LUCZYNSKI K.W., BRYNK T., OSTROWSKA B., SWIESZKOWSKI W., REIHSNER R., HELLMICH C., Consistent quasistatic and acoustic elasticity determination of poly-L-lactide-based rapidprototyped tissue engineering scaffolds, J. Biomed. Mater Res., Part A, 2013, vol. 101, 138–144.
  • [21] MACLEAN J.J., OWEN J.P., IATRIDIS J.C., Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs, J. Biomech., 2007, Vol. 40, 55–63.
  • [22] MALANDRINO A., NOAILLY J., LACROIX D., The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes, PLoS Comput. Biol., 2011, Vol. 7, e1002112.
  • [23] MARKOLF K.L., MORRIS J.M., The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces, J. Bone Joint. Surg. Am., 1974, Vol. 56, 675–687.
  • [24] MASUOKA K., MICHALEK A.J., MACLEAN J.J., STOKES I.A.F., IATRIDIS J.C., Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro, Spine, 2007, Vol. 32, 1974–1979.
  • [25] O’CONNELL G.D., JACOBS N.T., SEN S., VRESILOVIC E.J., ELLIOTT D.M., Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration, J. Mech. Behav. Biomed. Mater., 2011, 4, 933–942.
  • [26] PATWARDHAN A.G., HAVEY R.M., MEADE K.P., LEE B., DUNLAP B., A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression, Spine, 1999, Vol. 24, 1003-1009.
  • [27] PÉRIÉ D., KORDA D., IATRIDIS J.C., Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability, J. Biomech., 2005, Vol. 38, 2164–2171.
  • [28] POLLINTINE P., VAN TUNEN M.S.L.M., LUO J., BROWN M.D., DOLAN P., ADAMS M.A., Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis, Spine, 2010, Vol. 35, 386–394.
  • [29] RYAN G., PANDIT A., APATSIDIS D., Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine, Clin. Biomech., 2008, Vol. 23, 859–869.
  • [30] SMIT T.H. The use of a quadruped as an in vivo model for the study of the spine – biomechanical considerations, Eur. Spine J., 2002, Vol. 11, 137–144.
  • [31] STOKES I.F., LAIBLE J.P., GARDNER-MORSE M.G., COSTI J.J., IATRIDIS J.C., Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression, Ann. Biomed. Eng., 2011, Vol. 39, 122–131.
  • [32] THOMPSON J.P., PEARCE R.H., SCHECHTER M.T., ADAMS M.E., TSANG I.K., BISHOP P.B., Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc, Spine, 1990, Vol. 15, 411–415.
  • [33] VAN DER VEEN A.J., MULLENDER M.G., KINGMA I., VAN DIEEN J.H., VAN J.H., SMIT T.H., Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments, J. Biomech., 2008, Vol. 41, 1260–1268.
  • [34] VIRGIN W.J., Experimental properties into the physical properties on the intervertebral disc, J. Bone Joint. Surg., 1951, Vol. 33, B.
  • [35] ZHANG Y., DRAPEAU S., AN H.S., MARKOVA D., LENART B.A., ANDERSON D.G., Histological features of the degenerating intervertebral disc in a goat disc-injury model, Spine, 2011, Vol. 36, 1519–1527.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05444bfb-e8ca-4296-a5ff-2d76f5c0019a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.